共查询到20条相似文献,搜索用时 12 毫秒
1.
HU binding to bent DNA: a fluorescence resonance energy transfer and anisotropy study 总被引:4,自引:0,他引:4
HU, an architectural DNA-binding protein, either stabilizes DNA in a bent conformation or induces a bend upon binding to give other proteins access to the DNA. In this study, HU binding affinity for a bent DNA sequence relative to a linear sequence was investigated using fluorescence anisotropy measurements. A static bend was achieved by the introduction of two phased A4T4 tracts in a 20 bp duplex. Binding affinity for 20 bp duplexes containing two phased A-tracts in either a 5'-3' or 3'-5' orientation was found to be almost 10-fold higher than HU binding to a random sequence 20 bp duplex (6.1 vs 0.68 microM(-1)). The fluorescence technique of resonance energy transfer was used to quantitatively determine the static bend of the DNA duplexes and the HU-induced bend. DNA molecules were 5'-end labeled with fluorescein as the donor or rhodamine as the acceptor. From the efficiency of energy transfer, the end-to-end distance of the DNA duplexes was calculated. The end-to-end distance relative to DNA contour length (R/R(C)) yields a bend angle for the A-tract duplex of 45 +/- 7 degrees in the absence of HU and 70 +/- 3 degrees in the presence of HU. The bend angle calculated for the T4A4 tract duplex was 62 +/- 4 degrees after binding two HU dimers. Fluorescence anisotropy measurements reveal that HU binds in a 1:1 stoichiometry to the A4T4 tract duplex but a 2:1 stoichiometry to the T4A4 tract and random sequence duplex. These findings suggest that HU binding and recognition of DNA may be governed by a structural mechanism. 相似文献
2.
Trp151 in the lactose permease of Escherichia coli (LacY) is an important component of the sugar-binding site and the only Trp residue out of six that is in close proximity to the galactopyranoside in the structure (1PV7). The short distance between Trp151 and the sugar is favorable for F?rster resonance energy transfer (FRET) to nitrophenyl or dansyl derivatives with the fluorophore at the anomeric position of galactose. Modeling of 4-nitrophenyl-alpha-d-galactopyranoside (alpha-NPG) in the binding-site of LacY places the nitrophenyl moiety about 12 A away from Trp151, a distance commensurate with the F?rster distance for a Trp-nitrobenzoyl pair. We demonstrate here that alpha-NPG binding to LacY containing all six native Trp residues causes galactopyranoside-specific FRET from Trp151. Moreover, binding of alpha-NPG is sufficiently slow to resolve time-dependent fluorescence changes by stopped-flow. The rate of change in Trp --> alpha-NPG FRET is linearly dependent upon sugar concentration, which allows estimation of kinetic parameters for binding. Furthermore, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) covalently attached to the cytoplasmic end of helix X is sensitive to sugar binding, reflecting a ligand-induced conformational change. Stopped-flow kinetics of Trp --> alpha-NPG FRET and sugar-induced changes in MIANS fluorescence in the same protein reveal a two-step process: a relatively rapid binding step detected by Trp151 --> alpha-NPG FRET followed by a slower conformational change detected by a change in MIANS fluorescence. 相似文献
3.
The binding of adriamycin and its two analogues 4'-epidoxorubicin and 4'-deoxydoxorubicin to synthetic and mitochondrial membranes was investigated by using resonance energy transfer between these drugs and two fluorescent probes, diphenylhexatriene (DPH) and tryptophan. The fluorescence of the lipid probe DPH in both types of membranes and tryptophan in mitochondria was quenched by the anthracyclines in a dose-dependent manner. In sonicated, fluid-phase dimyristoyl-L-alpha-phosphatidylcholine (DMPC) vesicles, the half-quenching concentration (K50) of adriamycin was 17 +/- 1 microM, whereas in bilayers containing a 1:1 molar ratio of DMPC to cardiolipin (CL), the value was 8 +/- 1 microM. In liver and heart mitochondria, the K50 values were 8 +/- 2 and 11 +/- 3 microM, respectively. Similar results were obtained for the other two drugs. Replacing a nonionic with an ionic medium or decreasing the pH from pH 7.7 to pH 6.9 increased the K50 value of adriamycin for DPH in DMPC/CL (1:1 molar) liposomes and in mitochondria. Higher concentrations of anthracycline were needed to quench the fluorescence of tryptophan. The results suggest that these drugs interact with both phospholipids and proteins and that the cardiotoxicity of adriamycin is unlikely to be related to the amount of drug bound to heart mitochondria. 相似文献
4.
Thermodynamic parameters of closing up of guanine-rich thrombin binding element, upon binding to K(+) and Na(+) ions to form quadruplexes and opening up of these quadruplexes upon binding to its complementary strand, were investigated. For this purpose, 15mer deoxynucleotide, d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), labeled with 5'-fluorescein and 3'-tetramethylrhodamine was taken and fluorescence resonance energy transfer was monitored as a function of either metal ions or complementary strand concentrations. Equilibrium association constant obtained from FRET studies demonstrates that K(+) ions bind with higher affinity than the Na(+) ions. The enthalpy changes, DeltaH, obtained from temperature dependence of equilibrium association constant studies revealed that formation of quadruplex upon binding of metal ions is primarily enthalpy driven. Binding studies of complementary strand to the quadruplex suggest that opening of a quadruplex in NaCl buffer in presence of the complementary strand is enthalpic as well as entropic driven and can occur easily, whereas opening of the same quadruplex in KCl buffer suffers from enthalpic barrier. Comparison of overall thermodynamic parameters along with kinetics studies indicates that, although quadruplexes cannot efficiently compete with duplex formation at physiological pH, they delay the association of two strands. 相似文献
5.
Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study. 总被引:7,自引:1,他引:7 下载免费PDF全文
The ion-induced folding transitions of the hammerhead ribozyme have been analysed by fluorescence resonance energy transfer. The hammerhead ribozyme may be regarded as a special example of a three-way RNA junction, the global structure of which has been studied by comparing the distances (as energy transfer efficiencies) between the ends of pairs of labelled arms for the three possible end-to-end vectors as a function of magnesium ion concentration. The data support two sequential ion-dependent transitions, which can be interpreted in the light of the crystal structures of the hammerhead ribozyme. The first transition corresponds to the formation of a coaxial stacking between helices II and III; the data can be fully explained by a model in which the transition is induced by a single magnesium ion which binds with an apparent association constant of 8000-10 000 M-1. The second structural transition corresponds to the formation of the catalytic domain of the ribozyme, induced by a single magnesium ion with an apparent association constant of approximately 1100 M-1. The hammerhead ribozyme provides a well-defined example of ion-dependent folding in RNA. 相似文献
6.
Large unilamellar vesicles of dimyristoylphosphatidylcholine/cholesterol mixtures were studied using fluorescence techniques (steady-state fluorescence intensity and anisotropy, fluorescence lifetime, and fluorescence resonance energy transfer (FRET)). Three compositions (cholesterol mole fraction 0.15, 0.20, and 0.25) and two temperatures (30 and 40 degrees C) inside the coexistence range of liquid-ordered (l(o)) and liquid-disordered (l(d)) phases were investigated. Two common membrane probes, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dimyristoylphosphatidylethanolamine (NBD-DMPE) and N-(lissamine(TM)-rhodamine B)-dimyristoylphosphatidylethanolamine (Rh-DMPE), which form a FRET pair, were used. The l(o)/l(d) partition coefficients of the probes were determined by individual photophysical measurements and global analysis of time-resolved FRET decays. Although the acceptor, Rh-DMPE, prefers the l(d) phase, the opposite is observed for the donor, NBD-DMPE. Accordingly, FRET efficiency decreases as a consequence of phase separation. Comparing the independent measurements of partition coefficient, it was possible to detect very small domains (<20 nm) of l(o) in the cholesterol-poor end of the phase coexistence range. In contrast, domains of l(d) in the cholesterol-rich end of the coexistence range have comparatively large size. These observations are probably related to different processes of phase separation, nucleation being preferred in formation of l(o) phase from initially pure l(d), and domain growth being faster in formation of l(d) phase from initially pure l(o). 相似文献
7.
D E Epps M A Mitchell G L Petzold J H VanDrie R A Poorman 《Analytical biochemistry》1999,275(2):141-147
A sensitive fluorescence resonance energy transfer method was developed for the direct measurement of the dissociation constants of stromelysin inhibitors. The method is applied to the thiadiazole class of stromelysin inhibitors and it takes advantage of the fact that, upon binding to the active site of enzyme, the thiadiazole ring, with its absorbance centered at 320 nm, is able to quench the fluorescence of the tryptophan residues surrounding the catalytic site. The changes in fluorescence are proportional to the occupancy of the active site: Analysis of the fluorescence versus inhibitor concentration data yields dissociation constants that are in agreement with the corresponding competitive inhibitory constants measured by a catalytic rate assay. The affinity of nonthiadiazole inhibitors of stromelysin-such as hydroxamic acids and others-can be determined from the concentration-dependent displacement of a thiadiazole of known affinity. Using this displacement method, we determined the affinities of a number of structurally diverse inhibitors toward stromelysin. Since the three tryptophan residues located in the vicinity of the active site of stromelysin are conserved in gelatinase and collagenase, the method should also be applicable to inhibitors of other matrix metalloproteinases. 相似文献
8.
A method for studing the binging of ligands absorbing the light in the region of 350-550 nm to protein is described. The method is based on resonance energy transfer between the fluorescent label covalently bound to the protein and the ligand. The isoindole label, a product of the reaction of the protein with o-phthalaldehyde in the presence of 2-mercaptoethanol, was used as a fluorescent donor. The method was used to determine the binding parameters of a fluorescent probe (a naphthalimide derivative) with human serum albumin. A comparison of the results obtained by the resonance energy and transfer by equilibrium dialysis showed a high accuracy of the resonance energy transfer method. 相似文献
9.
Single-headed binding of a spin-labeled-HMM-ADP complex to F-actin. Saturation transfer electron paramagnetic resonance and sedimentation studies. 下载免费PDF全文
The interaction of actin and spin-labeled heavy meromyosin (MSL-HMM) was studied in the presence and absence of adenosine diphosphate or 5'-adenyl-yl-imidodiphosphate (AMPPNP) to determine the contributions of single and double-headed binding. The extent of single-headed binding to actin was deduced from a comparison of the fraction of immobilized heads (fi) with the fraction of bound molecules (fs) determined by saturation-transfer EPR (ST-EPR) and sedimentation, respectively. The ST-EPR measurements depend on the reduced motion of the spin label rigidly bound to the HMM heads upon the interaction of the latter with actin. During titration of acto-MSL-HMM with nucleotide, we measured changes in fi and fs brought about by dissociation of MSL-HMM from actin. On titration with ADP, fs changed very little, remaining above 0.8, while fi decreased to approximately 0.5 at 10mM ADP, a result consistent with extensive single-headed binding of MSL-HMM to actin. On titration with AMPPNP, single-headed binding was not detected; viz., fi and fs decreased in parallel. It was not necessary to postulate a nucleotide induced state of the bound heads, differing in motional properties from that of rigor heads, to account for the results. 相似文献
10.
11.
As a first step toward developing a structural map of key sites on the epidermal growth factor (EGF) receptor, we have used resonance energy transfer to measure the distance of closest approach between the receptor-bound growth factor molecule and lipid molecules at the surface of the plasma membrane. EGF, specifically labeled at its amino terminus with fluorescein 5-isothiocyanate, was used as an energy donor in these experiments, while either octadecylrhodamine B or octadecylrhodamine 101, inserted into plasma membranes isolated from human epidermoid carcinoma (A431) cells, served as the energy acceptors. The energy transfer measurements indicate that the amino terminus of the bound growth factor is about 67 A away from the plasma membrane. On the basis of the dimensions of the EGF molecule, this suggests that EGF binds to a site on its receptor that is a considerable distance (52-82 A) from the surface of these cells. Identical results were obtained under conditions where the receptor functions as an active tyrosine kinase, suggesting that the relative juxtaposition of the EGF binding domain to the membrane surface does not change with receptor autophosphorylation or with the activation of the receptor tyrosine kinase activity. 相似文献
12.
The stilbenedisulfonate inhibitory site of the human erythrocyte anion-exchange system has been characterized by using serveral fluorescent stilbenedisulfonates. The covalent inhibitor 4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate (BIDS) reacts specifically with the band 3 protein of the plasma membrane when added to intact erythrocytes, and the reversible inhibitors 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) and 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS) show a fluorescence enhancement upon binding to the inhibitory site on erythrocyte ghosts. The fluorescence properties of all three bound probes indicate a rigid, hydrophobic site with nearby tryptophan residues. The Triton X-100 solublized and purified band 3 protein has similar affinities for DBDS, BADS, and 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) to those observed on intact erythrocytes and erythrocyte ghosts, showing that the anion binding site is not perturbed by the solubilization procedure. The distance between the stilbenedisulfonate binding site and a group of cysteine residues on the 40 000-dalton amino-terminal cytoplasmic domain of band 3 was measured by the fluorescence resonance energy transfer technique. Four different fluorescent sulfhydryl reagents were used as either energy transfer donors or energy transfer acceptors in combination with the stilbenedisulfonates (BIDS, DBDS, BADS, and DNDS). Efficiencies of transfer were measured by sensitized emisssion, donor quenching, and donor lifetime changes. Although these sites are approachable from opposite sides of the membrane by impermeant reagents, they are separated by only 34--42 A, indicating that the anion binding site is located in a protein cleft which extends some distance into the membrane. 相似文献
13.
Although it is clear that soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complex plays an essential role in synaptic vesicle fusion, the dynamics of SNARE assembly during vesicle fusion remain to be determined. In this report, we employ fluorescence resonance energy transfer technique to study the formation of SNARE complexes. Donor/acceptor pair variants of green fluorescent protein (GFP), cyan fluorescent protein (CFP), and yellow fluorescent protein (YFP) are fused with the N termini of SNAP-25 and synaptobrevin, respectively. In vitro assembly of SNARE core complex in the presence of syntaxin shows strong fluorescence resonance energy transfer (FRET) between the CFP-SNAP-25 and YFP-synaptobrevin. Under the same conditions, CFP fused to the C terminus of SNAP-25, and YFP- synaptobrevin have no FRET. Adenovirus-mediated gene transfer is used to express the fusion proteins in PC12 cells and cultured rat cerebellar granule cells. Strong FRET is associated with neurite membranes and vesicular structures in PC12 cells co-expressing CFP-SNAP-25 and YFP-synaptobrevin. In cultured rat cerebellar granule cells, FRET between CFP-SNAP-25 and YFP-synaptobrevin is mostly associated with sites presumed to be synaptic junctions. Neurosecretion in PC12 cells initiated by KCl depolarization leads to an increase in the extent of FRET. These results demonstrate that significant amounts of stable SNARE complex exist prior to evoked synaptic vesicle fusion and that the assembly of SNARE complex occurs during vesicle docking/priming stage. Moreover, it demonstrates that FRET can be used as an effective tool for investigating dynamic SNARE interactions during synaptic vesicle fusion. 相似文献
14.
The interaction between bovine cytochrome b(5) (cyt b(5)) and horse heart cytochrome c (cyt c) is investigated by NMR spectroscopy. Chemical shifts of cyt b(5) backbone resonances and side chain methyl resonances were monitored as a function of cyt c concentration. The shifts are small but saturatable and indicate that the binding of cyt b(5) with cyt c is in fast exchange. An equilibrium association constant of (6 +/- 3) x 10(4) M(-1) was obtained with a lower limit of 180 s(-1) for the dissociation rate of the complex. To resolve considerable ambiguities in the interpretation of the chemical shift mapping, (15)N relaxation experiments and cross-saturation experiments were used as alternative methods to map the cyt b(5)-cyt c binding interface. Results from the three experiments combined demonstrate that the conserved negatively charged region of cyt b(5) surrounding the solvent-exposed heme edge is involved in the interaction with cyt c. These data support the models proposed by Salemme and Mauk [(1976) J. Mol. Biol. 102, 563-568; (1993) Biochemistry 32, 6613-6623]. 相似文献
15.
One of the important questions in the serpin mechanism of inhibition of serine and cysteine proteinases of different specificities and structural classes is whether a common "crushing" mechanism of proteinase inactivation is used in all cases. This mechanism was seen in an X-ray structure of the complex between alpha(1)-proteinase inhibitor and trypsin and required the full insertion of the reactive center loop into beta-sheet A and translocation of the proteinase from one pole of the serpin to the other. However, it has yet to be shown to be general for serine proteinases of structural classes other than the trypsin-fold or for cysteine proteinases with the papain-fold or for the caspases. Fluorescence resonance energy transfer offers a potential means of obtaining an answer to this question for each of these classes, without the concern for the effect that increasing size has on the observed signal that applies to NMR spectroscopy. However, care must be taken to ensure that measurements made represent sufficient overdetermination that the answer obtained is unambiguous. 相似文献
16.
Dimerization of the melanocortin 4 receptor: a study using bioluminescence resonance energy transfer
The melanocortin 4 receptor is important in the regulation of satiety. In this study we have investigated the propensity of the MC4 receptor to homodimerize. MC4 receptors with either a modified green fluorescent protein (GFP(2)) or Renilla luciferase (RLuc) at their C-terminus were constructed. These receptors showed equivalent binding and functional properties to the wild-type MC4 receptor. Bioluminescence resonance energy transfer readings indicated that the MC4 receptor exists as a constitutive homodimer, which was not regulated by peptide interaction. The efficiency of MC4 receptor to form homodimers was greatly enhanced compared to its ability to heterodimerize with the kappa opioid receptor. 相似文献
17.
Green bioluminescence in Renilla species is generated by a approximately 100% efficient RET (resonance energy transfer) process that is caused by the direct association of a blue-emitting luciferase [Rluc (Renilla luciferase)] and an RGFP (Renilla green fluorescent protein). Despite the high efficiency, such a system has never been evaluated as a potential reporter of protein-protein interactions. To address the question, we compared and analysed in mammalian cells the bioluminescence of Rluc and RGFP co-expressed as free native proteins, or as fused single-chain polypeptides and tethered partners of self-assembling coiled coils. Here, we show that: (i) no spontaneous interactions generating detectable BRET (bioluminescence RET) signals occur between the free native proteins; (ii) high-efficiency BRET similar to that observed in Renilla occurs in both fusion proteins and self-interacting chimaeras, but only if the N-terminal of RGFP is free; (iii) the high-efficiency BRET interaction is associated with a dramatic increase in light output when the luminescent reaction is triggered by low-quantum yield coelenterazine analogues. Here, we propose a new functional complementation assay based on the detection of the high-efficiency BRET signal that is generated when the reporters Rluc and RGFP are brought into close proximity by a pair of interacting proteins to which they are linked. To demonstrate its performance, we implemented the assay to measure the interaction between GPCRs (G-protein-coupled receptors) and beta-arrestins. We show that complementation-induced BRET allows detection of the GPCR-beta-arrestin interaction in a simple luminometric assay with high signal-to-noise ratio, good dynamic range and rapid response. 相似文献
18.
A quantitative technique for the nondestructive visualization of nanometer scale intermolecular separations in a living system is described. A calibration procedure for the acquisition and analysis of resonance energy transfer (RET) image data is outlined. The factors limiting RET imaging of biological samples are discussed. Measurements required for the calibration include: (a) the spectral sensitivity of the image intensifier (or camera); (b) the transmission spectra of the emission filters; and (c) the quantum distribution functions of the energy transfer pair measured in situ. Resonance energy transfer imaging is demonstrated for two DNA specific dyes. The Förster critical distance for energy transfer between Hoechst 33342 (HO) and acridine orange (AO) is 4.5 +/- 0.7 nm. This distance is slightly greater than the distance of a single turn of the DNA helix (3.5 nm or approximately 10 base pairs), and is well below the optical diffraction limit. Timed sequences of intracellular energy transfer reveal nuclear structure, strikingly similar to that observed with confocal and electron microscopy, and may show the spatial distribution of eu- and hetero- chromatin in the interphase nuclei. 相似文献
19.
20.
Vallotton P Tairi AP Wohland T Friedrich-Bénet K Pick H Hovius R Vogel H 《Biochemistry》2001,40(41):12237-12242
We have measured fluorescence resonance energy transfer (FRET) between a fluorescent antagonist, bound to the purified detergent-solubilized serotonin type 3 receptor, and a lipophilic acceptor probe partitioned into the micelle surrounding the detergent-solubilized receptor. The experimentally observed FRET efficiency was evaluated on the basis of the characteristic dimensions of the receptor-micelle complex and the average number of acceptor molecules in such micelles. The binding site was determined to be 5.4 +/- 0.9 nm above the center of the detergent micelle. The experiments were performed below the critical micellar concentration of the detergent (C(12)E(9)) used to solubilize the receptor, under which conditions it was demonstrated that the ligand binding activity was fully preserved. This reduces considerably the fluorescence background arising from probes not associated with the receptor, allowing a precise determination of the transfer efficiency. 相似文献