首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: The impedance to root growth imposed by soil can be decreased by both mucilage secretion and the sloughing of border cells from the root cap. The aim of this study is to quantify the contribution of these two factors for maize root growth in compact soil. METHODS: These effects were evaluated by assessing growth after removing both mucilage (treatment I -- intact) and the root cap (treatment D -- decapped) from the root tip, and then by adding back 2 micro L of mucilage to both intact (treatment IM -- intact plus mucilage) and decapped (treatment DM -- decapped plus mucilage) roots. Roots were grown in either loose (0.9 Mg m(-3)) or compact (1.5 Mg m(-3)) loamy sand soils. Also examined were the effects of decapping on root penetration resistance at three soil bulk densities (1.3, 1.4 and 1.5 Mg m(-3)). KEY RESULTS: In treatment I, mucilage was visible 12 h after transplanting to the compact soil. The decapping and mucilage treatments affected neither the root elongation nor the root widening rates when the plants were grown in loose soil for 12 h. Root growth pressures of seminal axes in D, DM, I and IM treatments were 0.328, 0.288, 0.272 and 0.222 MPa, respectively, when the roots were grown in compact soil (1.5 Mg m(-3) density; 1.59 MPa penetrometer resistance). CONCLUSIONS: The contributions of mucilage and presence of the intact root cap without mucilage to the lubricating effect of root cap (percentage decrease in root penetration resistance caused by decapping) were 43 % and 58 %, respectively. The lubricating effect of the root cap was about 30 % and unaffected by the degree of soil compaction (for penetrometer resistances of 0.52, 1.20 and 1.59 MPa).  相似文献   

2.
Root penetration resistance and elongation of maize seedling roots were measured directly in undisturbed cores of two sandy loam soils. Root elongation rate was negatively correlated with root penetration resistance, and was reduced to about 50 to 60% of that of unimpeded controls by a resistance of between 0.26 and 0.47 MPa. Resistance to a 30° semiangle, 1 mm diameter penetrometer was between about 4.5 and 7.5 times greater than the measured root penetration resistance. However, resistance to a 5° semiangle, 1 mm diameter probe was approximately the same as the resistnace to root penetration after subtracting the frictional component of resistance. The diameter of roots grown in the undisturbed cores was greater than that of roots grown in loose soil, probably as a direct result of the larger mechanical impedance in the cores.  相似文献   

3.
Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2?MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5?MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ~10% of penetration resistances were >2?MPa at a matric potential of -10?kPa, rising to nearly 50% >2?MPa at - 200?kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.  相似文献   

4.
We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.  相似文献   

5.
Field soils contain localized zones of larger penetration resistance within peds and compacted layers, while cracks and biopores offer low resistance pathways to roots. Root responses to such localized conditions have not been investigated in detail. This study examined what happens to the root elongation rate when roots grew through a layer of hard soil into a layer of looser soil for a 4 day period. The experiment was performed twice; firstly with the shoot in continuous darkness, and secondly with it exposed to a day-night cycle to prevent etiolation of the shoot. Pea seedlings were grown in columns of a sandy loam soil which was packed to bulk densities of 0.85, 1.1, 1.3 or 1.4 Mg/m3 in the top layer and 0.85 Mg/m3 in the bottom layer. The root elongation rate in the top layer of 1.4 Mg/m3 soil (penetrometer resistance=1.8 MPa) was only 55% of the elongation rate in the top layer of 0.85 Mg/m3 soil (penetrometer resistance=0.06 MPa). The elongation rate of roots that had grown through the top layer of 1.4 Mg/m3 soil into the bottom layer of loose soil was reduced by some residual effect of the mechanical impedance. The root elongation rate in the bottom layer of loose soil decreased as the penetrometer resistance of the top layer of soil increased. The daily elongation rate of the roots in the bottom layer that had grown through the 1.4 Mg/m3 soil averaged only about 65% of the elongation rate of the roots that had grown through the 0.85 Mg/m3 soil. This residual effect of mechanical impedance on root elongation persisted for at least 2 days and was more severe in the day-night cycle experiment than in the dark experiment. These results have important implications for modelling root elongation in any soil in which the soil strength changes with distance or with time.  相似文献   

6.
Root distribution determines largely the zone of soil that roots have access to for water and nutrient uptake, and is of great importance especially if water and fertilizer input is restricted. Mechanical impedance is the major limitation to root elongation in many field soils. Until now, experiments have focused largely on the axial resistance to root growth. In a fascinating study of the radial forces exerted by the roots of chickpea, root extension, diameter change, and the radial forces that axially unimpeded roots exert are reported: Kolb et al. (this volume) record radial stresses of about 0.3?MPa that are broadly consistent with cell turgor pressures, but, interestingly, find no restriction to axial elongation. This result is in marked contrast to large decreases in elongation of pea radicles resulting from much smaller axial pressures reported elsewhere in the literature (e.g., an 85?% decrease in root elongation in response to axial pressures of?<?0.1?MPa). The situation is different also from that in homogeneous soil, where root penetration resistance pressures of 0.4-1.0?MPa are typically required to halt root elongation. Soil structure and strength properties will determine the balance of axial and radial pressures on an individual root tip, and hence the root elongation response. It appears that a degree of radial confinement may help roots to extend axially into hard soil. This result also complements recent findings that in strong field soils the availability of soil macropores has a large influence on regulating the root-elongation rates of seedlings.  相似文献   

7.
Root caps provide a protective layer in front of the meristemthat protects the meristem from abrasion by soil particles.The continuous production and sloughing of the root cap cellsmay be an adaptation to decrease the friction at the soil-rootinterface by acting as a low-friction lining to the channelformed by the root. Experiments were performed which providethe first direct evidence that such cell sloughing decreasesfrictional resistance to root penetration. The penetration resistance (force per unit crosssectional area)to maize roots, which were pushed mechanically into the soil,was compared with the penetration resistance to growing rootsand to 1 mm diameter metal probes (cone semi-angles of 7.5or 30). The pushed roots experienced only about 40% of thepenetration resistance experienced by the 7.5 metal probe thatwas pushed into the soil at the same rate. Thus, the frictionbetween the soil and the pushed root was much smaller than betweenthe soil and the metal probe. The penetration resistance tothe growing root was between 50% and 100% of that to the pushedroot, indicating that the relief of friction and slower rateof soil compression were more efficient around the growing root.SEM examination of the surface of roots pushed or grown intothe soil showed that numerous root cap cells had detached fromthe cap and slid for several millimetres relative to the root.The low friction properties of roots may be due largely to thelow coefficient of friction between sloughing root cap cells,and may be decreased further by intracellular mucilage secretions. Key words: Zea mays, root cap, frictional resistance, root penetration, cell sloughing  相似文献   

8.
The aim of the present work was to determine the factors limiting growth in mechanically impeded roots. Pea roots were grown in compressed and uncompressed sand cores, and then removed and transferred to hydroponics. Root elongation was slowed in impeded sand cores and did not recover to the unimpeded rates until 60 h after transfer to the hydroponics system. Root diameter was greater in impeded roots, and only after 36 h in hydroponics was new root tissue produced of the same diameter as the unimpeded controls. The turgor pressure of the growing cells was measured with a turgor probe and was the same in both treatments. The slower elongation rate of the previously impeded roots was, therefore, the result of axial tightening of the cell walls. Cell length profiles suggested that axial cell wall tightening persisted in the unrestricted hydroponics system. Production of new cells in unrestricted conditions was required before root elongation returned to the unimpeded state. Osmotic potential was decreased by approximately 0.2 MPa in previously impeded roots compared with the unimpeded ones. This corresponds to a decrease in water potential of 0.2 MPa. These data are discussed in relation to regulation of cell extension, solute unloading and the penetration of compacted soils by roots.  相似文献   

9.
Bingham  I.J.  Bengough  A.G. 《Plant and Soil》2003,250(2):273-282
Root systems of individual crop plants may encounter large variations in mechanical impedance to root penetration. Split-root experiments were conducted to compare the effects of spatial variation in soil strength on the morphological plasticity of wheat and barley roots, and its relationship to shoot growth. Plants of spring barley (Hordeum vulgare cv Prisma) and spring wheat (Triticum aestivum cv Alexandria) were grown for 12 days with their seminal roots divided between two halves of a cylinder packed with sandy loam soil. Three treatment combinations were imposed: loose soil where both halves of the cylinder were packed to 1.1 g cm–3 (penetrometer resistance 0.3 MPa), dense soil where both halves were packed to 1.4 g cm–3 (penetrometer resistance 1 MPa), and a split-root treatment where one half was packed to 1.1 and the other to 1.4 g cm–3. In barley, uniform high soil strength restricted the extension of main seminal root axes more than laterals. In the split-root treatment, the length of laterals and the dry weight of main axes and laterals were increased in the loose soil half and reduced in the dense soil half compared with their respective loose and dense-soil controls. No such compensatory adjustments between main axis and laterals and between individual seminal roots were found in wheat. Variation in soil strength had no effect on the density of lateral roots (number per unit main axis length) in either barley or wheat. The nature and extent of wheat root plasticity in response to variation in soil strength was very different from that in response to changes in N-supply in previous experiments. In spite of the compensatory adjustments in growth between individual seminal roots of barley, the growth of barley shoots, as in wheat, was reduced when part of the root system was in compacted soil.  相似文献   

10.
Sloughing of root cap cells and exudation of mucilage plays an important role in the penetration of compacted soils by roots. For the first time we have quantified the rate of sloughing of root cap cells in an abrasive growth medium that was compacted to create mechanical impedance to root growth. The number of maize ( Zea mays ) root cap cells sloughed into sand increased as a result of compaction, from 1930 to 3220 d−1 per primary root. This represented a 12-fold increase in the number of cells sloughed per mm root extension (from 60 to >700). We estimated that the whole of the cap surface area was covered with detached cells in compacted sand, compared with c . 7% of the surface area in loose sand. This lubricating layer of sloughed cells and mucilage probably decreases frictional resistance to soil penetration. The total carbon deposited by the root was estimated at c . 110 μg g−1 sand d−1. Sloughed cells accounted for <10% of the total carbon, the vast majority of carbon being contained in mucilage exudates.  相似文献   

11.
Seedling roots of ten plant species were grown in siliceous sand wetted with solutions of polyethylene glycol (PEG) of MW=20,000 with osmotic potentials of 0.0, ? 0.25, ? 0.5 and ? 1.0 MPa. After 48 h growth under controlled lighting, root elongation and root diameter were measured. Root elongation of all species was reduced by increasing levels of external osmotic stress. Dicotyledonous species were affected more than monocotyledons at potentials of ? 0.25 and ? 0.5 MPa but less at ? 1.0 MPa. Root diameters of all the species were thicker than those of the unstressed at potentials of ? 0.25 and ? 0.5 MPa. At a potential of ? 1.0 MPa the dicotyledons were still thicker, though not by as much as they were at ? 0.25 and ? 0.5 MPa. The monocotyledons, in contrast, were thinner at ? 1.0 MPa. There was a significant positive correlation (r=0.81, p <0.01) between root diameter and root elongation at ? 1.0 MPa potential. Species were ranked according to the relative root elongation (RRE) and relative root thickness (RRT) at the highest level of stress (? 1.0 MPa). In both rankings dicotyledonous species were in the top ranks and monocotyledous species were in lower positions. The results are compared with those for the elongation and thickening of roots growing against external mechanical stress obtained in a previous study. There were good correlations between the responses observed for the two types of external stress. The implications of these findings are discussed.  相似文献   

12.
A field experiment was conducted to evaluate the influence of root diameter on the ability of roots of eight plant species to penetrate a compacted subsoil below a tilled layer. The soil was a fine sandy loam red-brown earth with a soil strength of about 3.0 MPa (at water content of 0.13 kg kg-1, corresponding to 0.81 plastic limit) at the base of a tilled layer. Relative root diameter (RRD), which was calculated as the ratio of the mean diameters of roots of plants grown in compacted soil to the mean diameters of those from uncompacted soil, was used to compare the sensitivity of roots to thicken under mechanical stress.Diameters of root tips of plants grown in soil with a compacted layer were consistently larger than those from uncompacted soil. Tap-rooted species generally had bigger diameters and RRDs than fibrous-rooted species. A higher proportion of thicker roots penetrated the strong layer at the interface than thinner roots. There were differences between plant species in the extent to which root diameter increased in response to the compaction. The roots which had larger RRD also tended to have higher penetration percentage.The results suggest that the size of a root has a significant influence on its ability to penetrate strong soil layers. It is suggested that this could be related to the effects which root diameter may have on root growth pressure and on the mode of soil deformation during penetration.  相似文献   

13.
Penetration of very strong soils by seedling roots of different plant species   总被引:19,自引:2,他引:17  
The abilities of seedling roots of twenty-two plant species to penetrate a strong growth medium were compared under controlled conditions. Seedlings were grown for 10 days in compression chambers filled with siliceous sandy soil at 0.2 kg kg–1 water content and mean penetrometer resistance of 4.2 MPa. Root elongation and thickening were measured after growth. The results show that soil strength reduced the elongation of roots of all plant species by over 90% and caused the diameters of the roots to increase compared with control plants grown in vermiculite (0 MPa resistance).Differences in both root elongation and root diameter were observed among plant species. Generally, the roots of dicotyledons (with large diameters) penetrated the strong medium more than graminaceous monocotyledons (with smaller diameters). There was a significant positive correlation (r=0.78, p<0.05) between root diameter and elongation over all the species in the stressed plants. The species were ranked according to the relative root elongation and relative root thickening. Based on this ranking, lupin (Lupinus angustifolius), medic (Medicago scutelata) and faba bean (Vicia faba) were the species with the greatest thickening and elongation while wheat (Triticum aestivum), rhodesgrass (Chloris gayana) and barley (Hordeum vulgare) had the least. The weight of the seeds did not seem to influence either the thickening or elongation of the roots.  相似文献   

14.

Background and Aims

Root system development is affected by soil conditions. The effects of bulk density, water content and penetration resistance on root development processes were investigated in peach trees.

Methods

Peach tree rootstocks were grown in various soil conditions, combining two bulk densities (1.2 and 1.5?g soil.cm-3) and three water contents (0.14, 0.17 and 0.20?g.g-1soil). Root parameters (tip diameter, length of apical unbranched zone, branching density and diameters of main and lateral roots) and plant growth (leaves, branches, trunk, root dry mass) were measured. Root growth processes (elongation, branching) were studied using relationships between root parameters.

Results

The proportion of biomass allocated to each plant compartment was similar whatever the soil conditions. Variations in root development were best explained by the variation in penetration resistance, rather than other soil properties. Increased soil penetration resistance reduced the root elongation rate, especially for thick roots. In addition, the branching pattern was affected. In soil with a high penetration resistance, the root system shape differs from a typical herringbone pattern.

Conclusions

These results allow quantification of the root system plasticity, and improve our understanding of the interactions between root development and soil properties.  相似文献   

15.
We investigated whether carboxylate exudation by chickpea (Cicer arietinum L.) was affected by soil bulk density and if this effect was local or systemic. We hypothesised that concentrations of carboxylates would increase with distance from the root apex due to continuous and constitutive accumulation of carboxylates, and that exudate accumulation would be greater in a compacted soil than in a loose soil. Plants were grown in split-root or single cylinders containing loose (1400 kg m (-3)) or compacted (1800 kg m (-3)) soil. Rhizosphere carboxylate concentrations were measured of whole root systems as well as of sections along the root. The root diameter was greatest of plants grown in the compacted soil; however, root diameters were the same for both root halves in the split-root design, whether they grew in loose soil or in compacted soil. Similarly, carboxylate concentrations tended to be lower for the whole root system in the compacted soil, but were the same for both root halves in the split-root design, irrespective of whether the roots were in loose soil or in compacted soil. These results indicate that both root diameter and carboxylate exudation by roots in chickpea is regulated systemically via a signal from the shoot rather than by local signals in the roots. There was no accumulation of carboxylates with increasing distance from the apex, probably because microbial degradation occurred at similar rates as carboxylate exudation. Malonate, previously suggested as deterrent to microorganisms, is likely only a selective deterrent.  相似文献   

16.
The role of roots penetrating various undisturbed soil horizons beneath loose layer in water use and shoot growth of maize was evaluated in greenhouse experiment. 18 undisturbed soil columns 20 cm in diameter and 20 cm in height were taken from the depths 30–50 cm and 50–70 cm from a Brown Lowland soil, a Pseudogley and a Brown Andosol (3 columns from each depth and soil). Initial resistance to penetration in undisturbed soil horizons varied from 2.5 to 8.9 MPa while that in the loose layer was 0.01 MPa. The undisturbed horizons had a major effect on vertical arrangement of roots. Root length density in loose layer varied from 96 to 126 km m-3 while in adjacent stronger top layers of undisturbed horizons from 1.6 to 20.0 km m-3 with higher values in upper horizons of each soil. For specific root length, the corresponding ranges were 79.4–107.7 m g-1 (on dry basis) and 38.2–63.7 m g-1, respectively. Ratios of root dry weight per unit volume of soil between loose and adjacent undisturbed layers were much lower than those of root length density indicating that roots in undisturbed horizons were produced with considerably higher partition of assimilates. Root size in undisturbed horizons relative to total roots was from 1.1 to 38.1% while water use from the horizons was from 54.1 to 74.0%. Total water use and shoot growth were positively correlated with root length in undisturbed soil horizons. There was no correlation between shoot growth and water use from the loose layers.  相似文献   

17.
We studied the effect of mechanical impedance on cell flux and meristematic activity in pea roots. Pea seedlings ( Pisum sativum L. cv. Helka) were grown in cores of sand packed to dry bulk densities of either; 1.4 Mg m−3 with an additional 2.4 kg uniaxial load applied to the surface to increase the mechanical resistance to growth (penetration resistance of 1.5 MPa); or 1.0 Mg m−3 (penetration resistance of 0.05 MPa). A water content of 0.06 g g−1 was chosen for optimum root growth. After 3 days, the seedlings were transferred to hydroponics, colchicine was added and the rate of cell doubling, mitotic index and length of the cell cycle was assessed. Cell flux in the third cortical layer was calculated for roots immediately removed from sand.Mechanical impedance slowed root extension to about 20% of the unimpeded rate, and final cell length was reduced to 50% of the unimpeded length. The rate of cell doubling was 3.4 times slower for roots recovering from mechanical impedance mostly as a result of a longer period spent in interphase. Cell flux in impeded roots was approximately half that of unimpeded roots (5 cells h−1), and contributed to a shorter cell file and elongation zone, and a slower rate of root elongation.  相似文献   

18.
不同土壤水分条件下容重对玉米生长的影响   总被引:26,自引:2,他引:24  
刘晚苟  山仑 《应用生态学报》2003,14(11):1906-1910
用玉米作为实验材料。进行分根实验研究不同土壤水分条件下容重对玉米生长的影响,种子根平分在装有塿土的分隔的白铁皮桶中,土壤容重分4种处理:低容重(两边容重都为1.20g·cm-3)、中容重(两边容重都为1.33g·cm-3)、高容重(两边容重都为1.45g·cm-3)和混合容重(一边为1.20g·cm-3,另一边为1.45g·cm-3),土壤水分控制在高基质势(-0.17MPa)和低基质势(-0.86MPa)两个水平,结果表明,当植株生长在紧实土壤或土壤基质势从-0.17MPa降到-0.86MPa时。根长、根干重和地上部干重都显著降低,并且地上部干重的降幅更大,紧实土壤使根长降低的同时还使根的直径增大,无论是容重增大还是土壤水分含量降低所引起的高土壤阻力都使叶片扩展速度降低和植株变小,生长在紧实土壤中的植株变小不仅是因为叶片扩展速度降低,同时是成熟叶片叶面积缩小的结果。然而,当植株生长在混合容重土壤中时,处在低容重土壤中的根系生长得到加强,补偿甚至超补偿高容重土壤中根系生长的不足,整个植株的生长状况与低容重土壤中生长的植株接近。  相似文献   

19.
Root responses to soil physical conditions; growth dynamics from field to cell   总被引:11,自引:0,他引:11  
Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.  相似文献   

20.
IAA responsiveness of sections of root tissue taken from the top and bottom of mung bean roots was assessed prior to and at varying times following gravistimulation. Prior to gravistimulation, root tissue sections from the sides of the elongation zone responded similarly to IAA. After gravistimulation (within 5 min), root sections from the bottom of the elongation zone became more responsive to IAA than sections collected from the upper side of the elongation zone. The change in IAA responsiveness of these tissue sections was transient with root sections from both the top and bottom of the elongation zone again exhibiting similar responsiveness to IAA following 15 minutes of gravistimulation.These studies also examined if the root tip is required for the gravity-induced shift in IAA responsiveness in the tissues of the elongation zone. The IAA responsiveness of top and bottom sections of the elongation zone from decapped mung bean roots was assessed at varying times following gravistimulation. The responsiveness to IAA of top and bottom sections changed rapidly in decapped roots, just as had been previously found for intact roots. Although the alteration in responsiveness was transient in decapped roots (just as intact roots), the time it took for the sections to recover previous responsiveness to IAA was extended.These results suggest that the initial growth response of graviresponding roots may be due to a change in the IAA responsiveness of tissues in the elongation zone and not an asymmetric accumulation of IAA on the lower side of the elongation zone. The results also indicate that the gravity-induced shift in IAA responsiveness in the elongation zone occurs independently of the root cap, suggesting that the cells in the elongation region can perceive and respond to gravity independently of the root cap during the intial phases of the gravity response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号