首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Recent studies on G-protein-coupled receptors revealed that they can dimerize. However, the role of each subunit in the activation process remains unclear. The gamma-amino-n-butyric acid type B (GABA(B)) receptor is comprised of two subunits: GB1 and GB2. Both consist of an extracellular domain (ECD) and a heptahelical domain composed of seven transmembrane alpha-helices, loops and the C-terminus (HD). Whereas GB1 ECD plays a critical role in ligand binding, GB2 is required not only to target GB1 subunit to the cell surface but also for receptor activation. Here, by analysing chimeric GB subunits, we show that only GB2 HD contains the determinants required for G-protein signalling. However, the HD of GB1 improves coupling efficacy. Conversely, although GB1 ECD is sufficient to bind GABA(B) ligands, the ECD of GB2 increases the agonist affinity on GB1, and is necessary for agonist activation of the receptor. These data indicate that multiple allosteric interactions between the two subunits are required for wild-type functioning of the GABA(B) receptor and highlight further the importance of the dimerization process in GPCR activation.  相似文献   

2.
γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.  相似文献   

3.
N-Methyl-D-aspartate receptors (NMDARs), one of three main classes of ionotropic glutamate receptors, play major roles in synaptic plasticity, synaptogenesis, and excitotoxicity. Unlike non-NMDA receptors, NMDARs are thought to comprise obligatory heterotetrameric complexes mainly composed of GluN1 and GluN2 subunits. When expressed alone in heterogenous cells, such as HEK293 cells, most of the NMDAR subunits can neither leave the endoplasmic reticulum (ER) nor be expressed in the cell membrane because of the ER retention signals. Only when NMDARs are heteromerically assembled can the ER retention signals be masked and NMDARs be expressed in the surface membrane. However, the mechanisms underlying NMDAR assembly remain poorly understood. To identify regions in subunits that mediate this assembly, we made a series of truncated or chimeric cDNA constructs. Using FRET measurement in living cells combined with immunostaining and coimmunoprecipitation analysis, we examined the assembly-determining domains of NMDAR subunits. Our results indicate that the transmembrane region of subunits is necessary for the assembly of NMDAR subunits, both for the homodimer and the heteromer.  相似文献   

4.
We investigated the role of G protein coupled-receptor kinases (GRKs) in the desensitization of GABA(B) receptor-mediated signaling using Xenopus oocytes and baby hamster kidney (BHK) cells. Baclofen elicited inward K(+) currents in oocytes coexpressing heterodimeric GABA(B) receptor, GABA(B1a) subunit (GB(1a)R) and GABA(B2) subunit (GB(2)R), together with G protein-activated inwardly rectifying K(+) channels (GIRKs), in a concentration-dependent manner. Repetitive application of baclofen to oocytes coexpressing GABA(B)R and GIRKs did not change peak K(+) currents in the first and second responses, but the latter responses were significantly attenuated by coexpression of either GRK4 or GRK5 with attenuation efficacy of GRK4 > GRK5. Coexpression of other GRKs including GRK2, GRK3, and GRK6 had no effect on GABA(B) receptor-mediated desensitization processes. In BHK cells coexpressing GRK4 fused to Venus (brighter variant of yellow fluorescent protein, GRK4-Venus) with GB(1a)R and GB(2)R, GRK4-Venus was expressed in the cytosol but was translocated to the plasma membranes by GABA(B)R activation. In BHK cells coexpressing GRK4 fused to Cerulean (brighter variant of cyan fluorescent protein, GRK4-Cerulean) with GB(1a)R and GB(2)R-Venus, fluorescence resonance energy transfer (FRET) analysis demonstrated that GRK4-Cerulean formed a protein complex with GB(2)R-Venus. Immunoprecipitation and Western blot analysis confirmed GB(2)R-GRK4 complex formation. GRK5 also formed a complex with GB(2)R on the plasma membranes as determined by FRET and Western blotting but not GRK2, GRK3, and GRK6. Our results indicate that GRK4 and GRK5 desensitize GABA(B) receptor-mediated responses by forming protein complexes with GB(2)R subunit of GABA(B)R at the plasma membranes.  相似文献   

5.
Though G-proteins have been implicated in the primary step of taste signal transduction, no direct demonstration has been done in insects. We show here that a G-protein gamma subunit, Ggamma1, is required for the signal transduction of sugar taste reception in Drosophila. The Ggamma1 gene is expressed mainly in one of the gustatory receptor neurons. Behavioral responses of the flies to sucrose were reduced by the targeted suppression of neural functions of Ggamma1-expressing cells using neural modulator genes such as the modified Shaker K+ channel (EKO), the tetanus toxin light chain or the shibire (shi(ts1)) gene. RNA interference targeting to the Ggamma1 gene reduced the amount of Ggamma1 mRNA and suppressed electrophysiological response of the sugar receptor neuron. We also demonstrated that responses to sugars were lowered in Ggamma1 null mutant, Ggamma1(N159). These results are consistent with the hypothesis that Ggamma1 participates in the signal transduction of sugar taste reception.  相似文献   

6.
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus.  相似文献   

7.
Editing modifies the GABA(A) receptor subunit alpha3   总被引:1,自引:1,他引:1       下载免费PDF全文
Adenosine to inosine (A-to-I) pre-mRNA editing by the ADAR enzyme family has the potential to increase the variety of the proteome. This editing by adenosine deamination is essential in mammals for a functional brain. To detect novel substrates for A-to-I editing we have used an experimental method to find selectively edited sites and combined it with bioinformatic techniques that find stem-loop structures suitable for editing. We present here the first verified editing candidate detected by this screening procedure. We show that Gabra-3, which codes for the alpha3 subunit of the GABA(A) receptor, is a substrate for editing by both ADAR1 and ADAR2. Editing of the Gabra-3 mRNA recodes an isoleucine to a methionine. The extent of editing is low at birth but increases with age, reaching close to 100% in the adult brain. We therefore propose that editing of the Gabra-3 mRNA is important for normal brain development.  相似文献   

8.
Recent studies have revealed that G-protein-coupled receptors contain a putative cytoplasmic helical domain, helix 8. Leukotriene B4 (LTB4) receptor 1 derivatives with truncated or mutated helix 8 showed much higher LTB4 binding than wild-type (WT) receptors. Similar to the WT receptor, LTB4 promoted guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding in these mutants. Unlike the WT receptor, however, the addition of GTPgammaS did not inhibit LTB4 binding to the mutant receptors. Scatchard analyses revealed that mutants maintained high affinity for LTB4, even in the presence of excess GTPgammaS. Consistently, mutant receptors showed a more prolonged Ca2+ mobilization and cellular metabolic activation than the WT receptor. From mutational studies and three-dimensional modeling based on the structure of bovine rhodopsin, we conclude that the helix 8 of LTB4 receptor 1 plays an important role in the conformational change of the receptor to the low affinity state after G-protein activation, possibly by sensing the status of coupling Galpha subunits as GTP-bound.  相似文献   

9.
BACKGROUND: SPAK (Ste20p-related proline alanine-rich kinase) phosphorylates and activates NKCC1 (Na-K-2Cl cotransporter) in the presence of another serine/threonine kinase WNK4 (With No lysine (K)). However, whether or not the docking of SPAK to NKCC1 is a requirement for cotransporter activation has not been fully resolved. METHODS: We mutated both SPAK binding motifs in the amino-terminal tail of NKCC1 and tested the interaction between SPAK and NKCC1 using a semi in vivo yeast two-hybrid assay, (32)P-ATP in vitro phosphorylation assays, and (86)Rb(+) uptake (a K(+) congener) assays in heterologously expressed Xenopus laevis oocytes. We also used site-directed mutagenesis to identify the principle phospho-regulatory threonine residues in the amino-terminal tail of NKCC1. RESULTS: A single SPAK binding motif is necessary for isotonic NKCC1 activation. Mutation of the phenylalanine (F) residue within the motif abrogates binding and function. Phosphorylation of the cotransporter is markedly reduced in the absence of SPAK docking to NKCC1. Truncations of internal regions of the amino-terminus of NKCC1 do not disrupt protein structure enough to affect cotransporter function. Threonine residues (T(206) and T(211)) are both identified as phospho-regulatory sites of NKCC1 function. CONCLUSION: We demonstrate that physical docking of SPAK to NKCC1 is necessary for cotransporter activity under both baseline and hyperosmotic conditions. We identify T(206) and T(211) as major phospho-acceptor sites involved in cotransporter function, with T(206) common to two separate regulatory pathways: one involving SPAK, the other involving a still unknown kinase that is responsive to forskolin/PKA stimulation.  相似文献   

10.
The gamma-aminobutyric acid, type B (GABA(B)) receptor is well recognized as being composed of two subunits, GABA(B1) and GABA(B2). Both subunits share structural homology with other class-III G-protein-coupled receptors. They are composed of two main domains: a heptahelical domain (HD) typical of all G-protein-coupled receptors and a large extracellular domain (ECD). Although GABA(B1) binds GABA, GABA(B2) is required for GABA(B1) to reach the cell surface. However, it is still not demonstrated whether the association of these two subunits is always required for function in the brain. Indeed, GABA(B2) plays a major role in the coupling of the heteromer to G-proteins, such that it is possible that GABA(B2) can transmit a signal in the absence of GABA(B1). Today only ligands interacting with GABA(B1) ECD have been identified. Thus, the compounds acting exclusively on the GABA(B2) subunit will be helpful in analyzing the specific role of this subunit in the brain. Here, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABA(B) receptor. We showed that it activates the wild type GABA(B) receptor but with a low efficacy. The GABA(B2) HD is necessary for this effect, although one cannot exclude that CGP7930 could also bind to GABA(B1). Of interest, CGP7930 could activate GABA(B2) expressed alone and is the first described agonist of GABA(B2). Finally, we show that CGP7930 retains its agonist activity on a GABA(B2) subunit deleted of its ECD. This demonstrates that the HD of GABA(B2) behaves similar to a rhodopsin-like receptor, because it can reach the cell surface alone, can couple to G-protein, and be activated by agonists. These data open new strategies for studying the mechanism of activation of GABA(B) receptor and examine any possible role of homomeric GABA(B2) receptors.  相似文献   

11.
The interferon-alpha (IFNalpha) receptor consists of two subunits, the IFNalpha receptor 1 (IFNaR1) and 2 (IFNaR2) chains. Following ligand binding, IFNaR1 is phosphorylated on tyrosine 466, and this site recruits Stat2 via its SH2 domain. In contrast, IFNaR2 binds Stat2 constitutively. In this study we have characterized the Stat2-IFNaR2 interaction and examined its role in IFNalpha signaling. Stat2 binds the major IFNaR2 protein but not a variant containing a shorter cytoplasmic domain. The interaction does not require a STAT SH2 domain. Both tyrosine-phosphorylated and non-phosphorylated Stat2 bind IFNaR2 in vitro; however, relatively little phosphorylated Stat2 associates with IFNaR2 in vivo. In vitro binding assays defined IFNaR2 residues 418-444 as the minimal interaction domain and site-specific mutation of conserved acidic residues within this domain disrupted in vitro and in vivo binding. An IFNaR2 construct carrying these mutations was either (i) overexpressed in 293T cells or (ii) used to complement IFNaR2-deficient U5A cells. Unexpectedly, the activity of an IFNalpha-dependent reporter gene was not reduced but, instead, was enhanced up to 2-fold. This suggests that this particular IFNaR2-Stat2 interaction is not required for IFNalpha signaling, but might act to negatively inhibit signaling. Finally, a doubly truncated recombinant fragment of Stat2, spanning residues 136-702, associated with IFNaR2 in vitro, indicating that the interaction with IFNaR2 is direct and occurs in a central region of Stat2 marked by a hydrophobic core.  相似文献   

12.
Cleft palate is one of the most common birth defects in humans, in which both genetic and environmental factors are involved. In mice, loss of the GABA(A) receptor beta3 subunit gene (Gabrb3) or the targeted mutagenesis of the GABA synthetic enzyme (Gad1) leads to cleft palate. These observations indicate that a GABAergic system is important in normal palate development. To determine what cell types, neuronal or nonneuronal, are critical for GABA signaling in palate development, we used the neuron-specific enolase promoter to express the beta3 subunit in Gabrb3 mutant mice. Expression of this construct was able to rescue the neurological phenotype, but not the cleft palate phenotype. Combined with the previous observation demonstrating that ubiquitous expression of the beta3 subunit rescued the cleft palate phenotype, a nonneuronal GABAergic system is implicated in palate development. Using immunohistochemistry, we detected GABA in the developing palate, initially in the nasal aspect of palatal epithelium of the vertical shelves; later in the medial edge epithelium of the horizontally oriented palatal shelves and in the epithelial seam during fusion. Based on these observations, we propose that GABA, synthesized by the palatal epithelium, acts as a signaling molecule during orientation and fusion of the palate shelves.  相似文献   

13.
In CHO cells we had found that CCK positively regulated cell proliferation via the activation of a soluble guanylate cyclase. Here we demonstrate that CCK stimulated a nitric oxide synthase (NOS) activity. The production of NO was involved in the proliferative response elicited by CCK regarding the inhibitory effect of NOS inhibitors L-NAME and alpha-guanidinoglutaric acid. We identified the NOS activated by the peptide as the neuronal isoform: the expression of the C415A neuronal NOS mutant inhibited both CCK-induced stimulation of NOS activity and cell proliferation. These two effects were also inhibited after expression of the C459S tyrosine phosphatase SHP-2 mutant and the betaARK1 (495-689) sequestrant peptide, indicating the requirement of activated SHP-2 and G-betagamma subunit. Kinetic analysis (Western blot after coimmunoprecipitation and specific SHP-2 activity) revealed that in response to CCK-treatment, SHP-2 associated to G-beta1 subunit, became activated, and then dephosphorylated the neuronal NOS through a direct association. These data demonstrate that the neuronal NOS is implicated in proliferative effect evoked by CCK. A novel growth signaling pathway is described, involving the activation of neuronal NOS by dephosphorylation of tyrosyl residues.  相似文献   

14.
There is evidence that GABA plays a major role in sleep regulation. GABA(A) receptor agonists and different compounds interacting with the GABA(A) receptor complex, such as barbiturates and benzodiazepines, can interfere with the sleep/wake cycle. On the other hand, there is very little information about the possible role of GABA(B) receptors in sleep modulation. The nucleus basalis of Meynert (NBM), a cholinergic area in the basal forebrain, plays a pivotal role in the modulation of sleep and wakefulness, and both GABA(A) and GABA(B) receptors have been described within the NBM. This study used unilateral infusions in the NBM to determine the effects of 3-hydroxy-5-aminomethylisoxazole hydrobromide (muscimol hydrobromide, a GABA(A) receptor subtype agonist) and beta-(aminomethyl)-4-chlorobenzenepropanoic acid (baclofen, a GABA(B) receptor subtype agonist) on sleep parameters in freely moving rats by means of polygraphic recordings. Muscimol (0.5 nmol) and baclofen (0.7 nmol) induced an increase in slow-wave sleep and an inhibition of wakefulness. Muscimol, but not baclofen, also caused a decrease in desynchronized sleep parameters. The results reported here indicate that 1) the NBM activation of both GABA(A) and GABA(B) receptors influences the sleep/wake cycle, and 2) GABA(A) but not GABA(B) receptors are important for desynchronized sleep modulation, suggesting that the two GABAergic receptors play different roles in sleep modulation.  相似文献   

15.
16.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system and it acts at the GABA(A) and GABA(B) receptors. A possible role for the GABA(A) receptors in alcohol action has been derived from in vitro cell models, animal studies and human research. GABA(A) subunit mRNA expression in cell models has suggested that the long form of the gamma2 subunit is essential for ethanol enhanced potentiation of GABA(A) receptors, by phosphorylation of a serine contained within the extra eight amino acids. Several animal studies have demonstrated that alterations in drug and alcohol responses may be caused by amino-acid differences at the GABA(A)alpha6 and GABA(A)gamma2 subunits. An Arg(100)/Glu(100) change at the GABA(A)alpha6 subunit conferring altered binding efficacy of the benzodiazepine inverse agonist Ro 15-4513, was found between the AT (alcohol tolerance) and ANT (alcohol non-tolerance) rats. Several loci related to alcohol withdrawal on mouse chromosome 11 which corresponds to the region containing four GABA(A) subunit (beta2, alpha6, alpha1 and gamma2) genes on human chromosome 5q33-34, were also identified. Gene knockout studies of the role of GABA(A)alpha6 and GABA(A)gamma2 subunit genes in mice have demonstrated an essential role in the modulation of other GABA(A) subunit expression and the efficacy of benzodiazepine binding. Absence of the GABA(A)gamma2 subunit gene has more severe effects with many of the mice dying shortly after birth. Disappointingly few studies have examined the effects of response to alcohol in these gene knockout mice. Human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have a role in the development of alcohol dependence, although their contributions may vary between ethnic group and phenotype. In summary, in vitro cell, animal and human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have an important role in alcohol related phenotypes (300 words).  相似文献   

17.
The transmembrane receptor 'ROR2' resembles members of the receptor tyrosine kinase family of signalling receptors in sequence but its' signal transduction mechanisms remain enigmatic. This problem has particular importance because mutations in ROR2 are associated with two human skeletal dysmorphology syndromes, recessive Robinow Syndrome (RS) and dominant acting Brachydactyly type B (BDB). Here we show, using a constitutive dimerisation approach, that ROR2 exhibits dimerisation-induced tyrosine kinase activity and the ROR2 C-terminal domain, which is deleted in BDB, is required for recruitment and activation of the non-receptor tyrosine kinase Src. Native ROR2 phosphorylation is induced by the ligand Wnt5a and is blocked by pharmacological inhibition of Src kinase activity. Eight sites of Src-mediated ROR2 phosphorylation have been identified by mass spectrometry. Activation via tyrosine phosphorylation of ROR2 receptor leads to its internalisation into Rab5 positive endosomes. These findings show that BDB mutant receptors are defective in kinase activation as a result of failure to recruit Src.  相似文献   

18.
Docosahexaenoic acid (DHA) and other polyunsaturated fatty acids (PUFAs) promote GABA(A) receptor [(3)H]-muscimol binding, and DHA increases the rate of GABA(A) receptor desensitization. Triton X-100, a structurally unrelated amphiphile, similarly promotes [(3)H]-muscimol binding. The mechanism(s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABA(A) receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown that membrane protein function can be regulated by amphiphile-induced changes in bilayer elasticity and hypothesized that GABA(A) receptors could be similarly regulated. We therefore studied the effects of four structurally unrelated amphiphiles that decrease bilayer stiffness (Triton X-100, octyl-beta-glucoside, capsaicin, and DHA) on GABA(A) receptor function in mammalian cells. All the compounds promoted GABA(A) receptor [(3)H]-muscimol binding by increasing the binding capacity of high-affinity binding without affecting the associated equilibrium binding constant. A semiquantitative analysis found a similar quantitative relation between the effects on bilayer stiffness and [(3)H]-muscimol binding. Membrane cholesterol depletion, which also decreases bilayer stiffness, similarly promoted [(3)H]-muscimol binding. In whole-cell voltage-clamp experiments, Triton X-100, octyl-beta-glucoside, capsaicin, and DHA all reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABA(A) receptor function is regulated by lipid bilayer elasticity. PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer.  相似文献   

19.
We showed previously that Phe(303) in transmembrane segment (TM) VI of the alpha(1B)-adrenergic receptor, a highly conserved residue in G-protein-coupled receptors (GPCRs), is critically involved in receptor-activation and G-protein-coupling [Chen, S. H., Lin, F., Xu, M., Hwa, J., and Graham, R. M. (2000) EMBO J. 19, 4265-4271]. Here, we show that saturation mutagenesis of Phe(303) results in a series of mutants with different levels of constitutive activity for inositol phosphate (IP) signaling. Mutants F303G and F303N showed neither basal nor agonist-stimulated IP turnover, whereas F303A displayed increased basal activity but an attenuated maximal response to (-)-epinephrine-stimulation. F303L, on the other hand, showed all features of a typical constitutively active GPCR with markedly increased basal activity and increased potency and efficacy of agonist-stimulated IP signaling. All mutants displayed higher agonist-binding affinities than the wild-type receptor, and by thermal stability studies, those able to signal showed increased susceptibility to inactivation with an order of sensitivity (F303L > F303A > WT) directly related to their degree of constitutive activity. Using the substituted cysteine accessibility method (SCAM) and equilibrium binding studies, we further show that the F303A and F303L mutants result in TM helical movements that differ in accordance with their degree of constitutive activity. These findings, therefore, confirm and extend our previous data implicating Phe(303) as a key residue coupling TM helical movements to G-protein-activation.  相似文献   

20.
A trafficking checkpoint controls GABA(B) receptor heterodimerization   总被引:19,自引:0,他引:19  
Margeta-Mitrovic M  Jan YN  Jan LY 《Neuron》2000,27(1):97-106
Surface expression of GABA(B) receptors requires heterodimerization of GB1 and GB2 subunits, but little is known about mechanisms that ensure efficient heterodimer assembly. We found that expression of the GB1 subunit on the cell surface is prevented through a C-terminal retention motif RXR(R); this sequence is reminiscent of the ER retention/retrieval motif RKR identified in subunits of the ATP-sensitive K+ channel. Interaction of GB1 and GB2 through their C-terminal coiled-coil alpha helices masks the retention signal in GB1, allowing the plasma membrane expression of the assembled complexes. Because individual GABA(B) receptor subunits and improperly assembled receptor complexes are not functional even if expressed on the cell surface, we conclude that a trafficking checkpoint ensures efficient assembly of functional GABA(B) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号