首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Understanding the annual cycle of migratory birds is imperative for evaluating the evolution of life‐history strategies and developing effective conservation strategies. Yet, we still know little about the annual cycle of migratory birds that breed at south‐temperate latitudes of South America. We aged, sexed, and determined the progression and intensity of body, remige, and rectrix molt of migratory Fork‐tailed Flycatchers (Tyrannus s. savana) at breeding sites in southern South America and at wintering sites in northern South America. Molt of both body and flight feathers occurred primarily during the winter. In early winter, a similar proportion of young and adult flycatchers molted remiges and rectrices, but remige molt intensity (number of remiges molting) was greater and primary molt progression (mean primary feather molting) more advanced in adults. In late winter, remige molt intensity and primary molt progression did not differ between age groups. We found no difference between males and females either in the proportion of individuals molting in winter or in the intensity or progress of remige molt. Our results suggest that the nominate subspecies of Fork‐tailed Flycatcher undergoes one complete, annual molt on the wintering grounds, and represents the first comprehensive evaluation of molt timing of a migratory New World flycatcher that overwinters in the tropics. Given that breeding, molt, and migration represent three key events in the annual cycle of migratory birds, knowledge of the timing of these events is the first step toward understanding the possible tradeoffs migratory birds face throughout the year.  相似文献   

2.
In the annual cycle of migratory birds, temporal and energetic constraints can lead to carry‐over effects, in which performance in one life history stage affects later stages. Bar‐tailed godwits Limosa lapponica baueri, which achieve remarkably high pre‐migratory fuel loads, undertake the longest non‐stop migratory flights yet recorded, and breed during brief high‐latitude summers, may be particularly vulnerable to persistent effects of disruptions to their rigidly‐timed annual routines. Using three years of non‐breeding data in New Zealand, we asked how arrival timing after a non‐stop flight from Alaska (>11 000 km) affected an individual godwit's performance in subsequent flight feather moult, contour feather moults, and migratory departure. Late arrival led to later wing moult, but godwits partially compensated for delayed moult initiation by increasing moult rate and decreasing the total duration of moult. Delays in arrival and wing moult up to 34–37 d had no apparent effect on an individual's migratory departure or extent of breeding plumage at departure, both of which were extraordinarily consistent between years. Thus, ‘errors’ in timing early in the non‐breeding season were essentially corrected in New Zealand prior to spring migration. Variation in migration timing also had no apparent effect on an individual's likelihood of returning the following season. The bar‐tailed godwits’ rigid maintenance of plumage and spring migration schedules, coupled with high annual survival, imply a surprising degree of flexibility to address unforeseen circumstances in the annual cycle.  相似文献   

3.
Migratory shorebirds have some of the highest fat loads among birds, especially species which migrate long distances. The upland sandpiper Bartramia longicauda makes long‐distance migrations twice a year, but variation in body condition or timing of feather molt during the non‐breeding season has not been studied. Molt is an important part of the annual cycle of migratory birds because feather condition determines flight performance during migration, and long‐distance movements are energetically costly. However, variation in body condition during molt has been poorly studied. The objective of our field study was to examine the timing and patterns of feather molt of a long distance migratory shorebird during the non‐breeding season and test for relationships with body size, fat depots, mass, and sex. Field work was conducted at four ranches in the Northern Campos of Uruguay (Paysandú and Salto Departments). We captured and marked 62 sandpipers in a 2‐month period (Nov–Jan) during four non‐breeding seasons (2008–2012). Sex was determined by genetic analyses of blood samples taken at capture. Molt was measured in captured birds using rank scores based on published standards. Body mass and tarsus length measurements showed female‐biased sexual size dimorphism with males smaller than females. Size‐corrected body mass (body condition) showed a U‐shaped relationship with the day of the season, indicating that birds arrived at non‐breeding grounds in relatively good condition. Arriving in good body condition at non‐breeding grounds is probably important because of the energetic demands due to physiological adjustments after migration and the costs of feather molt.  相似文献   

4.
Population limitation models of migratory birds have sought to include impacts from events across the full annual cycle. Previous work has shown that events occurring in winter result in some individuals transitioning to the breeding grounds earlier or in better physical condition than others, thereby affecting reproductive success (carry‐over effects). However, evidence for carry‐over effects from breeding to wintering grounds has been shown less often. We used feather corticosterone (CORTf) levels of the migratory Louisiana Waterthrush Parkesia motacilla as a measure of the physiological state of birds at the time of moult on the breeding territory to investigate whether carry‐over effects provide linkages across the annual cycle of this stream‐obligate bird. We show that birds arriving on wintering grounds with lower CORTf scores, indicating reduced energetic challenges or stressors at the time of moult, occupied higher quality territories, and that these birds then achieved a better body condition during the overwinter period. Body condition, in turn, was important in determining whether adult birds returned the following winter, with birds in better condition returning at higher rates. Together these data suggest a carry‐over effect from the breeding grounds to the wintering grounds that is further extended with respect to annual return rates. Very few other studies have linked conditions during the previous breeding season with latent effects during the subsequent overwintering period or with annual survival. This study shows that the effects of variation in energetic challenges or stressors can potentially carry over from the natal stream and accumulate over more than one life‐history period before being manifested in reduced survival. This is of particular relevance to models of population limitation in migratory birds.  相似文献   

5.
Costs of reproduction represent a common life‐history trade‐off. Critical to understanding these costs in migratory species is the ability to track individuals across successive stages of the annual cycle. We assessed the effects of total number of offspring fledged and date of breeding completion on pre‐migratory body condition, the schedule of moult and annual survival in a migratory songbird, the Savannah Sparrow Passerculus sandwichensis. Between 2008 and 2010, moult was delayed for individuals that finished breeding later in the breeding period and resulted in reduced lean tissue mass during the pre‐migratory period, suggesting an indirect trade‐off between the timing of breeding completion and condition just prior to migration. Lean tissue mass decreased as the number of offspring fledged increased in 2009, a particularly cool and wet year, illustrating a direct trade‐off between reproductive effort and condition just prior to migration in years when weather is poor. However, using a 17‐year dataset from the same population, we found that parents that fledged young late in the breeding period had the highest survival and that number of offspring fledged did not affect survival, suggesting that individuals do not experience long‐term trade‐offs between reproduction and survival. Taken together, our results suggest that adult Savannah Sparrows pay short‐term costs of reproduction, but that longer‐term costs are mitigated by individual quality, perhaps through individual variation in resource acquisition.  相似文献   

6.
The scheduling of molt in migratory birds   总被引:2,自引:0,他引:2  
Summary We model the yearly cycle of small migratory birds to explain the variation in scheduling of complete molt, in particular why some birds molt immediately after breeding on the breeding grounds (summer molt) whereas others migrate to their wintering grounds before molt is initiated (winter molt). We employ the method of dynamic programming, because of its suitability for modelling life history traits. Feather quality and latitude entered the model as state variables and were assumed to affect survival rate and reproductive success. Migration and molt were assumed to be associated with increased mortality risks. By changing the parameters in the model we were able to generate most existing molt patterns, including summer and winter molt, biannual (summer and winter) molt, and molt migration. Our model suggests that the scheduling of molt is basically a result of a trade-off between having a high feather quality during breeding versus during the non-breeding period. A high impact of feather quality on survival rate in combination with low costs of molt resulted in biannual molt. Winter molt became more likely as the survival rateper se increased. A low seasonal amplitude in survival rate is a prerequisite for the occurrence of molt migration. Molt duration, migration costs and reproductive successper se were found to have no impact on the timing of molt. We also investigated the effect of benefits from prior occupancy at breeding and winter grounds.  相似文献   

7.
Dependence on climate‐driven environmental cues in the initiation of life cycle stages is a critical attribute when assessing vulnerability of species to climate change impacts. This study focused on spring ice phenology as a cue to the settling of migratory waterbirds, asking whether there is an asynchrony between ice phenology and settling phenology that could affect breeding success of six species with divergent population trends. In the 37 study lakes in southeastern Finland, the ice‐out date not only varied considerably between years, but became progressively earlier during the study period, 1991–2018. Settling phenology of all species tracked inter‐annual variation in ice phenology. However, the degree of asynchrony between ice phenology and settling phenology varied between species, allowing discrimination between early and late settlers. Considerable inter‐annual variation also occurred within species, but in only one species did the degree of asynchrony correlate with the ice‐out date: for the horned grebe Podiceps auritus an earlier ice‐out date meant greater asynchrony between settling phenology and ice phenology. The degree of asynchrony between settling phenology and ice phenology did not affect breeding success in any species. However, ice phenology per se affected breeding success of horned grebes: earlier ice‐out was associated with lower annual breeding success. Breeding numbers of horned grebe showed a long‐term decline. Results suggest that short‐distance migratory birds are able to respond to climate change‐driven phenological changes in their breeding environments, and that this ability may not depend on the relative timing of breeding.  相似文献   

8.
Events happening in one season can affect life‐history traits at (the) subsequent season(s) by carry‐over effects. Wintering conditions are known to affect breeding success, but few studies have investigated carry‐over effects on survival. The Eurasian oystercatcher Haematopus ostralegus is a coastal wader with sedentary populations at temperate sites and migratory populations in northern breeding grounds of Europe. We pooled continental European ringing‐recovery datasets from 1975 to 2000 to estimate winter and summer survival rates of migrant and resident populations and to investigate long‐term effects of winter habitat changes. During mild climatic periods, adults of both migratory and resident populations exhibited survival rates 2% lower in summer than in winter. Severe winters reduced survival rates (down to 25% reduction) and were often followed by a decline in survival during the following summer, via short‐term carry‐over effects. Habitat changes in the Dutch wintering grounds caused a reduction in food stocks, leading to reduced survival rates, particularly in young birds. Therefore, wintering habitat changes resulted in long‐term (>10 years) 8.7 and 9.4% decrease in adult annual survival of migrant and resident populations respectively. Studying the impact of carry‐over effects is crucial for understanding the life history of migratory birds and the development of conservation measures.  相似文献   

9.
Geolocators are small light-weight data loggers used to track individual migratory routes, and their use has increased exponentially in birds. However, the effects of geolocators on individual performance are still poorly known. We studied geolocator effects on a long-distance migrating passerine bird, the northern wheatear (Oenanthe oenanthe L.). We asked the general question of whether geolocators affect migratory behaviour and subsequent reproductive performance of small passerines by comparing arrival time, breeding time, breeding success and survival of geolocator versus control birds of known identity and breeding history. During two years geolocator birds (n=37) displayed a lower apparent survival (30%) as compared to controls (45%, n=164). Furthermore, returning geolocator birds (n=12) arrived on average 3.5 days later, started laying eggs 6.3 days later, and had lower nest success (25%) than control birds (78%). Our results suggest that geolocators affect migratory performance with carry-over effects to the timing of breeding and reproductive success in the subsequent breeding season. We discuss the implications of such geolocator effects for the study of migratory strategies of small passerines in general and suggest how to identify and investigate such effects in the future.  相似文献   

10.
Migration distances of shorebird species correlate with life history strategies. To assess age‐specific migratory preparation and adult wing‐molt strategies, we studied Western Sandpipers (Calidris mauri) and Semipalmated Sandpipers (C. pusilla) with different migration routes at the Paracas National Reserve in Perú, one of the most austral non‐breeding areas for these sandpipers, from 2012 to 2015. Western Sandpipers breed near the Bering Sea, ~11,000 km from Paracas. Semipalmated Sandpiper populations at Paracas are a mixture of short‐billed birds from western Arctic breeding sites, plus long‐billed birds from eastern sites, ~8000 km distant. Adults of both species arrive in October with primary feathers already partially renewed so wing molt starts at sites further north. Semipalmated Sandpipers with longer bills completed wing molt later than shorter billed birds. Adults of both species prepared for migration in February and March. No juvenile Western Sandpipers prepared for migration, confirming the “slow” over‐summering life history strategy of more southerly non‐breeding populations. Juvenile Semipalmated Sandpipers showed bimodality in strategies. Most showed no migratory preparation, but, during three non‐breeding periods, from 27% to 31% fattened, molted, and partially replaced outer primaries during the pre‐migratory period. Juveniles with longer culmens were heavier and tended to have more alternate plumage. Juveniles that were partially molting primaries had longer culmens and more alternate plumage. Juvenile Semipalmated Sandpipers from eastern‐breeding populations thus have a higher propensity for a fast life history strategy, and western birds a slow one, at this non‐breeding site in Peru. Western‐breeding Semipalmated Sandpiper populations thus resemble Western Sandpipers, suggesting a common, possibly distance‐related, effect on life history strategy.  相似文献   

11.
The importance of understanding the geographic distribution of the full annual cycle of migratory birds has been increasingly highlighted over the past several decades. However, the difficulty of tracking small birds between breeding and wintering areas has hindered progress in this area. To learn more about Kirtland's warbler Setophaga kirtlandii movement patterns throughout the annual cycle, we deployed archival light‐level geolocators across their breeding range in Michigan. We recovered devices from 27 males and analyzed light‐level data within a Bayesian framework. We found that most males wintered in the central Bahamas and exhibited a loop migration pattern. In both fall and spring, departure date was the strongest predictor of arrival date, but in spring, stopover duration and migration distance were also important. Though stopover strategies varied, males spent the majority of their spring migration at stopover sites, several of which were located just before or after large ecological barriers. We argue that loop migration is likely a response to seasonal variation in prevailing winds. By documenting a tight link between spring departure and arrival dates, we provide a plausible mechanism for previously documented carry‐over effects of winter rainfall on reproductive success in this species. The migratory periods remain the least understood periods for all birds, but by describing Kirtland's warbler migration routes and timing, and identifying locations of stopover sites, we have begun the process of better understanding the dynamics of their full annual cycle. Moreover, we have provided managers with valuable information on which to base future conservation and research priorities.  相似文献   

12.
The phases of the annual cycle for migratory species are inextricably linked. Yet, less than five percent of ecological studies examine seasonal interactions. In this study, we utilized stable hydrogen isotopes to geographically link individual black‐and‐white warblers (Mniotilta varia) captured during spring migration with breeding destinations to understand a migrant's stopover strategy in the context of other phases of the annual cycle. We found that stopover strategy is not only a function of a bird's current energetic state, but also the distance remaining to breeding destination and a bird's time‐schedule, which has previously been linked to habitat conditions experienced in the preceding phase of the annual cycle. Birds in close proximity to their breeding destination accumulate additional energy reserves prior to arrival on the breeding grounds, as reflected by higher migratory condition upon arrival, higher refueling rates measured via blood plasma metabolites, and longer stopover durations compared to birds migrating to breeding destinations farther from the stopover site. However, late birds near their breeding destination were more likely to depart on the day of arrival (i.e., transients), and among birds that stopped over at the site, the average duration of stopover was almost half the time of early conspecifics, suggesting late birds are trying to catch‐up with the overall time‐schedule of migration for optimal arrival time on the breeding grounds. In contrast, birds with long distances remaining to breeding destinations were more likely to depart on the day of arrival and primarily used stopover to rest before quickly resuming migration, adopting similar strategies regardless of a bird's time‐schedule. Our study demonstrates that migrants adjust their en route strategies in relation to their time‐schedule and distance remaining to their breeding destination, highlighting that strategies of migration should be examined in the context of other phases of the annual cycle.  相似文献   

13.
We examined how conditions prior to migration influenced migration performance of two breeding populations of black‐and‐white warblers Mniotilta varia by linking information on the migrant's winter habitat quality, measured via stable carbon isotopes, with information on their breeding destination, measured via stable hydrogen isotopes. The quality of winter habitat strongly influenced the timing of migration when we accounted for differential timing of migration between breeding populations. Among birds migrating to the same breeding destination, males and females arriving early to the stopover site originated from more mesic habitat than later arriving birds, suggesting that the benefits of occupying high‐quality mesic habitat during the winter positively influence the timing of migration. However, male warblers arriving early to the stopover site were not in better migratory condition than later arriving conspecifics that originated from poor‐quality xeric winter habitat, regardless of breeding destination. The two breeding populations stopover at the study site during different time periods, suggesting that the lower migratory condition of early birds is not a function of the time of season, but potentially a migrant's migration strategy. Strong selection pressures to arrive early on the breeding grounds to secure high‐quality breeding territories may drive males from high‐quality winter habitat to minimize time at the expense of energy. This migration strategy would result in a smaller margin of safety to buffer the effects of adverse weather or scarcity of food, increasing the risk of mortality. The migratory condition of females was the same regardless of the timing of migration or breeding destination, suggesting that females adopt a strategy that conserves energy during migration. This study fills an important gap in our understanding of the linkages between winter habitat quality and factors that influence the performance of migration, the phase of the annual cycle thought to be limiting most migratory bird populations.  相似文献   

14.
Timing is crucial in seasonal environments. Passerine birds typically use a combination of physiological mechanisms and environmental cues to ensure that breeding, moult and migration occur without major temporal overlap and under the most favourable conditions. However, late in the breeding season some individuals initiate additional clutches , whereas others initiate moult. Such alternative strategies are thought to reflect trade‐offs between reproductive benefits and timely investment in maintenance and survival. The degree of seasonal plasticity differs between species, depending on the mechanisms that govern their annual routine. Migrants are generally under pressure to complete breeding and moult before the autumn departure and often show little plasticity. We studied seasonal plasticity of breeding and moult schedules in the European Stonechat Saxicola rubicola. This species, an obligate short‐distance migrant in Central Europe, sometimes initiates late clutches after typically at least two earlier breeding attempts. Based on life‐history theory and on observations in captivity, which revealed photoperiodic regulation of breeding and moult, we predicted relatively little seasonal plasticity in Stonechats. We further predicted that reproductive gains of late breeders should be offset by reduced survival. These predictions were tested on long‐term field data, using Underhill–Zucchini models to estimate moult. Late breeding occurred in c. 40% of pairs and increased their reproductive success by a third. Both sexes modified moult timing but in different ways. Late breeding females postponed moult approximately until chick independence without compensating for delay by faster moult. Males started moult on time and overlapped it with breeding, associated with markedly slowed plumage change. Sex differences in moult score increased with lay date, but due to their respective modifications, both sexes delayed moult completion. Nonetheless, we could not detect any evidence for survival costs of late breeding. Breeding and moult of European Stonechats appear relatively flexible, despite migratory schedules and photoperiodic programs for seasonal timing. Individuals can modify seasonal behaviour in late summer, presumably depending on their condition, and may profit considerably from extended breeding.  相似文献   

15.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

16.
Climate change is profoundly affecting the phenology of many species. In migratory birds, there is evidence for advances in their arrival time at the breeding ground and their timing of breeding, yet empirical studies examining the interdependence between arrival and breeding time are lacking. Hence, evidence is scarce regarding how breeding time may be adjusted via the arrival‐breeding interval to help local populations adapt to local conditions or climate change. We used long‐term data from an intensively monitored population of the northern wheatear (Oenanthe oenanthe) to examine the factors related to the length of 734 separate arrival‐to‐breeding events from 549 individual females. From 1993 to 2017, the mean arrival and egg‐laying dates advanced by approximately the same amount (~5–6 days), with considerable between‐individual variation in the arrival‐breeding interval. The arrival‐breeding interval was shorter for: (a) individuals that arrived later in the season compared to early‐arriving birds, (b) for experienced females compared to first‐year breeders, (c) as spring progressed, and (d) in later years compared to earlier ones. The influence of these factors was much larger for birds arriving earlier in the season compared to later arriving birds, with most effects on variation in the arrival‐breeding interval being absent in late‐arriving birds. Thus, in this population it appears that the timing of breeding is not constrained by arrival for early‐ to midarriving birds, but instead is dependent on local conditions after arrival. For late‐arriving birds, however, the timing of breeding appears to be influenced by arrival constraints. Hence, impacts of climate change on arrival dates and local conditions are expected to vary for different parts of the population, with potential negative impacts associated with these factors likely to differ for early‐ versus late‐arriving birds.  相似文献   

17.
ABSTRACT In some passerines, the extent of preformative molt varies among individuals. Wrentits (Chamaea fasciata) undergo either a complete preformative molt or an eccentric (i.e., incomplete) preformative molt where some juvenile remiges are retained through the first cycle. Factors that influence the incidence and extent of molt are largely unknown. Using a 10‐yr data set from the Palomarin Field Station in central coastal California, we quantified the incidence of eccentric molt and the degree to which variation in the incidence was associated with fledging date and weather. From 1999 to 2009, 159 Wrentits were banded as nestlings and subsequently recaptured. Of these, 21% of first‐year Wrentits underwent eccentric molt. We used logistic regression and an information theoretic approach to compare models with fledging date, weather (annual precipitation and breeding‐season temperature), and a random effect of year as predictors of the incidence of eccentric molt. Our top model included a random intercept term for year and a fixed effect for the effect of fledging date; birds that fledged later in the season were more likely to undergo eccentric molt. Although the proportion of individuals that underwent eccentric molt varied among years, models with breeding‐season temperature and annual rainfall showed little to no support. Our results suggest that the incidence of eccentric molt is more strongly associated with fledging date than with annual variation in weather. The absence of a correlation with weather suggests that weather does not impose an energetic constraint on molt or, if it does, that birds are constrained in their ability to respond to changes in weather by adjusting the extent of their preformative molt. Other factors, such as nestling condition, may provide alternative explanations for year‐to‐year variability in the incidence of eccentric molt.  相似文献   

18.
The capacity of migratory species to adapt to climate change may depend on their migratory and reproductive strategies. For example, reproductive output is likely to be influenced by how well migration and nesting are timed to temporal patterns of food abundance, or by temperature variations during the brood rearing phase. Based on two decades (1988–2009) of waterfowl counts from a boreal catchment in southern Finland we assessed how variation in ice break‐up date affected nesting phenology and breeding success in two sympatric duck species, Mallard Anas platyrhynchos and Eurasian Teal Anas crecca. In Fennoscandia these species have similar breeding habitat requirements but differ in migration distance; Teal migrate roughly seven times as far as do Mallard. Annual ice break‐up date was used as a proxy of spring ‘earliness’ to test the potential effect of climate change on hatching timing and breeding performance. Both species were capable of adapting their nesting phenology, and bred earlier in years when spring was early. However, the interval from ice break‐up to hatching tended to be longer in early springs in both species, so that broods hatched relatively later than in late springs. Ice break‐up date did not appear to influence annual number of broods per pair or annual mean brood size in either species. Our study therefore does not suggest that breeding performance in Teal and Mallard is negatively affected by advancement of ice break‐up at the population level. However, both species showed a within‐season decline in brood size with increasing interval between ice break‐up and hatching. Our study therefore highlights a disparity between individuals in their capacity to adjust to ice break‐up date, late breeders having a lower breeding success than early breeders. We speculate that breeding success of both species may therefore decline should a consistent trend towards earlier springs occur.  相似文献   

19.
Assessing the drivers of survival across the annual cycle is important for understanding when and how population limitation occurs in migratory animals. Density‐dependent population regulation can occur during breeding and nonbreeding periods, and large‐scale climate cycles can also affect survival throughout the annual cycle via their effects on local weather and vegetation productivity. Most studies of survival use mark–recapture techniques to estimate apparent survival, but true survival rates remain obscured due to unknown rates of permanent emigration. This is especially problematic when assessing annual survival of migratory birds, whose movement between breeding attempts, or breeding dispersal, can be substantial. We used a multistate approach to examine drivers of annual survival and one component of breeding dispersal (habitat‐specific movements) in a population of American redstarts (Setophaga ruticilla) over 11 years in two adjacent habitat types. Annual survival displayed a curvilinear relation to the Southern Oscillation Index, with lower survival during La Niña and El Niño conditions. Although redstart density had no impact on survival, habitat‐specific density influenced local movements between habitat types, with redstarts being less likely to disperse from their previous year's breeding habitat as density within that habitat increased. This finding was strongest in males and may be explained by conspecific attraction influencing settlement decisions. Survival was lowest in young males, but movement was highest in this group, indicating that apparent survival rates were likely biased low due to permanent emigration. Our findings demonstrate the utility of examining breeding dispersal in mark–recapture studies and complement recent work using spatially explicit models of dispersal probability to obtain greater accuracy in survival estimates.  相似文献   

20.
The temporal and spatial organization of the annual cycle according to local conditions is of crucial importance for individuals’ fitness. Moreover, which sites and when particular sites are used can have profound consequences especially for migratory animals, because the two factors shape interactions within and between populations, as well as between animal and the environment. Here, we compare spatial and temporal patterns of two latitudinally separated breeding populations of a trans‐Equatorial passerine migrant, the collared flycatcher Ficedula albicollis, throughout the annual cycle. We found that migration routes and non‐breeding residency areas of the two populations largely overlapped. Due to climatic constraints, however, the onset of breeding in the northern population was approximately two weeks later than that of the southern population. We demonstrate that this temporal offset between the populations carries‐over from breeding to the entire annual cycle. The northern population was consistently later in timing of all subsequent annual events – autumn migration, non‐breeding residence period, spring migration and the following breeding. Such year‐round spatiotemporal patterns suggest that annual schedules are endogenously controlled with breeding latitude as the decisive element pre‐determining the timing of annual events in our study populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号