首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytoskeleton-dependent changes in cell shape are well-established factors regulating a wide range of cellular functions including signal transduction, gene expression, and matrix adhesion. Although the importance of mechanical forces on cell shape and function is well established in cultured cells, very little is known about these effects in whole tissues or in vivo. In this study we used ex vivo and in vivo models to investigate the effect of tissue stretch on mouse subcutaneous tissue fibroblast morphology. Tissue stretch ex vivo (average 25% tissue elongation from 10 min to 2 h) caused a significant time-dependent increase in fibroblast cell body perimeter and cross-sectional area (ANOVA, P < 0.01). At 2 h, mean fibroblast cell body cross-sectional area was 201% greater in stretched than in unstretched tissue. Fibroblasts in stretched tissue had larger, "sheetlike" cell bodies with shorter processes. In contrast, fibroblasts in unstretched tissue had a "dendritic" morphology with smaller, more globular cell bodies and longer processes. Tissue stretch in vivo for 30 min had effects that paralleled those ex vivo. Stretch-induced cell body expansion ex vivo was inhibited by colchicine and cytochalasin D. The dynamic, cytoskeleton-dependent responses of fibroblasts to changes in tissue length demonstrated in this study have important implications for our understanding of normal movement and posture, as well as therapies using mechanical stimulation of connective tissue including physical therapy, massage, and acupuncture. mechanotransduction; connective tissue; tensegrity; musculoskeletal manipulations; acupuncture  相似文献   

2.
The effect of peptides with sequences derived from connexins, the constituent proteins of gap junctions, on mechanically stimulated intercellular Ca(2+) signaling in tracheal airway epithelial cells was studied. Three peptides with sequences corresponding to connexin extracellular loop regions reversibly restricted propagation of Ca(2+) waves to neighboring cells. Recovery of communication began within 10 min of removal of the peptides, with inhibition totally reversed by 20-40 min. The peptides were shown to be more effective in inhibiting Ca(2+) waves than glycyrrhetinic acid or oleamide. Inhibition of intercellular Ca(2+) waves by connexin mimetic peptides did not affect the Ca(2+) response to extracellular ATP. Although the intracellular Ca(2+) response of tracheal epithelial cells to ATP was greatly reduced by either pretreatment with high doses of ATP or application of apyrase, mechanically stimulated intercellular Ca(2+) signaling was not affected by these agents. We conclude that connexin mimetic peptides are effective and reversible inhibitors of gap junctional communication of physiologically significant molecules that underlie Ca(2+) wave propagation in tracheal epithelial cells and propose a potential mechanism for the mode of action of mimetic peptides.  相似文献   

3.
The effect of vascular stretch on the release of EDRF was studied by measuring tissue cGMP levels of rabbit. Aortic rings of rabbit were quick-frozen in liquid nitrogen during varying resting tensions, and cGMP contents were determined by radio-immunoassay. The tissue cGMP levels significantly elevated with the increase in resting tension in endothelium-intact rings, but not in endothelium-denuded rings. Deprivation of extracellular calcium abolished the stretch-induced elevation of tissue cGMP levels in endothelium-intact segments. These stretch-induced endothelium dependent tissue cGMP elevations were unaffected by Ca2+ channel blockers, nicardipine and diltiazem. Data suggest that vascular stretch may release EDRF via mechanism dependent on extracellular calcium, but probably not through voltage-dependent calcium channel.  相似文献   

4.
Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1?/? rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.  相似文献   

5.
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross‐sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in, and dissociated from, areolar and dense connective tissue in response to 2 h of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet‐like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch‐induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells' tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. J. Cell. Physiol. 228: 50–57, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. J. Cell. Biochem. 114: 1714–1719, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The goal of this study was to investigate the effect of mechanical loading on osteoblasts and extracellular signal-regulated kinase (ERK1/2) signaling in relation to osteoblast differentiation and mineralization. A human osteoblast cell line (SV-HFO) was triggered to differentiate to the advanced state of mineralization by addition of the osteogenic factors dexamethasone and beta-glycerophosphate. Osteoblasts were subjected to cyclic, equibiaxial stretch for 5, 15, or 60 min at different stages of differentiation (days 7, 14, and 21). Baseline (static) phosphorylated ERK1/2 and total ERK1/2 levels gradually increased during osteoblast differentiation. Cyclic stretch induced a rapid increase in ERK1/2 phosphorylation with a maximum between 5 and 15 min. Prolonged stretching for 60 min resulted in a decrease of phosphorylated ERK1/2 towards baseline level, suggesting a desensitization mechanism. The effect of stretch on ERK1/2 phosphorylation was strongest at later stages of differentiation (days 14 and 21). At day 21, the increase of ERK1/2 phosphorylation in response to stretch was significantly lower in non-differentiating than in differentiating osteoblasts. This could not be explained by differences in cell density, but did correlate with the formation of extracellular matrix, collagen fibrils. Mineralization of the extracellular matrix did not lead to a further increase of ERK1/2 phosphorylation. In conclusion, the current study demonstrates that the extent of activation of the ERK1/2 pathway is dependent on the differentiation or functional stage of the osteoblast. The presence of an extracellular matrix, but not per se mineralization, seems to be the predominant determinant of osteoblastic response to strain.  相似文献   

8.
ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 muM. The OGD-induced ATP release was inhibited by Gd(3+) and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl(-) channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X(7) receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd(3+) and arachidonic acid. The channel was found to be permeable to ATP(4-) with a permeability ratio of P(ATP)/P(Cl) = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions.  相似文献   

9.
Astrocytes are capable of widespread intercellular communication via propagated increases in intracellular Ca(2+) concentration. We have used patch clamp, dye flux, ATP assay, and Ca(2+) imaging techniques to show that one mechanism for this intercellular Ca(2+) signaling in astrocytes is the release of ATP through connexin channels ("hemichannels") in individual cells. Astrocytes showed low Ca(2+)-activated whole-cell currents consistent with connexin hemichannel currents that were inhibited by the connexin channel inhibitor flufenamic acid (FFA). Astrocytes also showed molecular weight-specific influx and release of dyes, consistent with flux through connexin hemichannels. Transmembrane dye flux evoked by mechanical stimulation was potentiated by low Ca(2+) and was inhibited by FFA and Gd(3+). Mechanical stimulation also evoked release of ATP that was potentiated by low Ca(2+) and inhibited by FFA and Gd(3+). Similar whole-cell currents, transmembrane dye flux, and ATP release were observed in C6 glioma cells expressing connexin43 but were not observed in parent C6 cells. The connexin hemichannel activator quinine evoked ATP release and Ca(2+) signaling in astrocytes and in C6 cells expressing connexin43. The propagation of intercellular Ca(2+) waves in astrocytes was also potentiated by quinine and inhibited by FFA and Gd(3+). Release of ATP through connexin hemichannels represents a novel signaling pathway for intercellular communication in astrocytes and other non-excitable cells.  相似文献   

10.
Spreading depression (SD) is a self-propagating wave of neuronal and glial depolarization that may occur in virtually any gray matter region in the brain. One consequence of SD is an increased tolerance to ischemia. It has been shown that during cortical SD ATP is released into the extracellular space and activation of purinergic receptors leads to the induction of ischemic tolerance. In the present study we show that depolarization of cultured neurons induces ischemic tolerance which is mediated by purinergic receptor activation. Depolarization causes the release of ATP into the extracellular medium, which may be prevented by treatment with the connexin hemichannel blockers flufenamic acid and quinine, but not the pannexin hemichannel blocker carbenoxolone. Knockdown of connexin 36 expression by siRNA greatly reduces the amount of ATP released during depolarization and the subsequent degree of ischemic tolerance. We conclude that during depolarization neurons release ATP by way of connexin 36 hemichannels.  相似文献   

11.
Adenosine-5'-triphosphate (ATP) released from damaged cells can affect functions of adjacent cells. Injuries of peripheral tissue stimulate nerves, but effect of ATP on the nerve bundles is still speculative. Peripheral nerves are surrounded by perineurium, therefore the response of perineurium may be a first event of nerve stimulation at tissue injuries. The aim of the present study is to clarify whether the perineurium responds to ATP. To this end, we analyzed the dynamics of the intracellular calcium concentration ([Ca2+]i) of perineurial cells by confocal microscopy. ATP induced a [Ca2+]i increase of perineurial cells. Ca2+ channel blockers and removing of extracellular Ca2+, but not thapsigargin pretreatment, abolished ATP-induced [Ca2+]i dynamics. This indicated that the [Ca2+]i increase was due to an influx of extracellular Ca2+. Adenosine-5'-diphosphate also elicited an increase of [Ca2+]i, but P1 receptor agonists had few effects on [Ca2+]i dynamics. Suramin (an antagonist of P2X and P2Y receptors) totally inhibited ATP-induced [Ca2+]i dynamics, but reactive blue 2 (a P2Y receptor antagonist) did not. Uridine-5'-triphosphate (a P2Y receptor agonist) induced no significant change in [Ca2+]i, but alpha,beta-methylene ATP (a P2X receptor agonist) caused a [Ca2+]i increase. In conclusion, perineurial cells respond to extracellular ATP mainly via P2X receptors.  相似文献   

12.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP(3) elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

13.
ATP is the most important factor in glucose-induced insulin secretion in pancreatic beta-cells, but examination of intracellular differences in ATP concentration is difficult because ATP production and consumption occur simultaneously. In the present study, we measured the ATP concentration under the condition of a reduced ATP requirement by omitting extracellular Ca(2+) and inhibiting Na-K ATPase. The ATP concentration in islets incubated with 16.7 mM glucose in the absence of Ca(2+) for 30 min was increased by about 1. 9-fold more than in the presence of Ca(2+). The increment was extracellular Ca(2+)-dependent, and was completely abolished by the metabolic inhibitors dinitrophenol and iodoacetic acid. The Ca channel blockers including nitrendipine and Ni(2+) did not affect the ATP concentration in islets incubated with 16.7 mM glucose in the presence of Ca(2+). However, when thapsigargin and suramin, inhibitors of Ca-ATPase at the endoplasmic reticulum, were added to Ca channel blockers in the presence of ambient Ca(2+), the intraislet ATP content was increased, similarly to that under Ca-free conditions. But thapsigargin did not further augment the ATP concentration in the islet with 16.7 mM glucose in the absence of Ca(2+). On the other hand, the suppression of Na-K ATPase by ouabain rather reduced the ATP concentration augmented by omission of extracellular Ca(2+). In addition, vanadate, a blocker of Ca-ATPase at the plasma membrane, failed to increase the ATP concentration in the islets. These data suggest that the increment of ATP concentration in the absence of Ca(2+) is attributable to the reduced ATP requirement due to stopping of the Ca-ATPase activity at the endoplasmic reticulum, and that the intracellular ATP concentration is differently regulated by Na-K ATPase at plasma membrane and by Ca-ATPase at endoplasmic reticulum.  相似文献   

14.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3 elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

15.
Intracellular calcium changes trigger connexin 32 hemichannel opening   总被引:9,自引:0,他引:9  
Connexin hemichannels have been proposed as a diffusion pathway for the release of extracellular messengers like ATP and others, based on connexin expression models and inhibition by gap junction blockers. Hemichannels are opened by various experimental stimuli, but the physiological intracellular triggers are currently not known. We investigated the hypothesis that an increase of cytoplasmic calcium concentration ([Ca2+]i) triggers hemichannel opening, making use of peptides that are identical to a short amino-acid sequence on the connexin subunit to specifically block hemichannels, but not gap junction channels. Our work performed on connexin 32 (Cx32)-expressing cells showed that an increase in [Ca2+]i triggers ATP release and dye uptake that is dependent on Cx32 expression, blocked by Cx32 (but not Cx43) mimetic peptides and a calmodulin antagonist, and critically dependent on [Ca2+]i elevation within a window situated around 500 nM. Our results indicate that [Ca2+]i elevation triggers hemichannel opening, and suggest that these channels are under physiological control.  相似文献   

16.
Propagation of interastrocyte Ca2+ waves is mediated by diffusion of extracellular adenosine triphosphate (ATP), and may require regenerative release of ATP. The ability of ATP to initiate release of intracellular ATP was assessed by labeling adenine nucleotide pools in astrocyte cultures with 14C-adenine. The 14C-purines released during exposure to ATP were then identified by thin-layer chromatography. ATP treatment caused a five-fold increase in release of 14C-ATP but not 14C-ADP or 14C-AMP, indicating selectivity for release of ATP. Other P2 receptor agonists also caused significant 14C-ATP release, and the P2 receptor antagonists suramin, reactive blue-2 and pyridoxalphosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) inhibited ATP-induced 14C-ATP release to varying degrees, suggesting the involvement of a P2 receptor. ATP-induced 14C-ATP release was not affected by chelation of intracellular Ca2+ with BAPTA-AM, or by blockers of Ca2+ release from intracellular stores or of extracellular Ca2+ influx, suggesting a Ca2+-independent response. ATP-induced 14C-ATP release was significantly inhibited by non-selective anion channel blockers but not by blockers of ATP-binding cassette proteins, gap junction hemichannels, or vesicular exocytosis. Release of adenine nucleotides induced by 0 Ca2+ was, in contrast, not selective for ATP, and was susceptible to inhibition by gap junction blockers. These findings indicate that astrocytes are capable of ATP-induced ATP release and support a role for regenerative ATP release in glial Ca2+ wave propagation.  相似文献   

17.
The carotid body (CB) is a chemosensory organ that detects changes in chemical composition of arterial blood and maintains homeostasis via reflex control of ventilation. Thus, in response to a fall in arterial PO(2) (hypoxia), CB chemoreceptors (type I cells) depolarize, and release neurotransmitters onto afferent sensory nerve endings. Recent studies implicate ATP as a key excitatory neurotransmitter released during CB chemoexcitation, but direct evidence is lacking. Here we use the luciferin-luciferase bioluminescence assay to detect ATP, released from rat chemoreceptors in CB cultures, fresh tissue slices, and whole CB. Hypoxia evoked an increase in extracellular ATP, that was inhibited by L-type Ca(2+)channel blockers and reduced by the nucleoside hydrolase, apyrase. Additionally, iberiotoxin (IbTX; 100 nM), a blocker of O(2)-sensitive Ca(2+)-dependent K(+) (BK) channels, stimulated ATP release and largely occluded the effect of hypoxia. These data strongly support a neurotransmitter role for ATP in carotid body function.  相似文献   

18.
We examined whether ATP stimulation of P2X purinoceptors would raise blood pressure in decerebrate cats. Femoral arterial injection of the P2X receptor agonist alpha,beta-methylene ATP into the blood supply of the triceps surae muscle induced a dose-dependent increase in arterial blood pressure. The maximal increase in mean arterial pressure (MAP) evoked by 0.1, 0.2, and 0.5 mM alpha,beta-methylene ATP (0.5 ml/min injection rate) was 6.2 +/- 2.5, 22.5 +/- 4.4, and 35.2 +/- 3.9 mmHg, respectively. The P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (2 mM ia) attenuated the increase in MAP elicited by intra-arterial alpha,beta-methylene ATP (0.5 mM), whereas the P2Y receptor antagonist reactive blue 2 (2 mM ia) did not affect the MAP response to alpha,beta-methylene ATP. In a second group of experiments, we tested the hypothesis that ATP acting through P2X receptors would sensitize muscle afferents and, thereby, augment the blood pressure response to muscle stretch. Two kilograms of muscle stretch evoked a 26.5 +/- 4.3 mmHg increase in MAP. This MAP response was enhanced when 2 mM ATP or 0.1 mM alpha,beta-methylene ATP (0.5 ml/min) was arterially infused 10 min before muscle stretch. Furthermore, this effect of ATP on the pressor response to stretch was attenuated by 2 mM pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (P < 0.05) but not by the P1 purinoceptor antagonist 8-(p-sulfophenyl)-theophylline (2 mM). These data indicate that activation of ATP-sensitive P2X receptors evokes a skeletal muscle afferent-mediated pressor response and that ATP at relatively low doses enhances the muscle pressor response to stretch via engagement of P2X receptors.  相似文献   

19.
Extracellular ATP acts as a potent agonist on cardiomyocytes, inducing a broad range of physiological responses via P2 purinoceptors. Its concentration in the interstitial space within the heart is elevated during ischemia or hypoxia due to its release from a number of cell types, including cardiomyocytes. However, the exact mechanism responsible for the release of ATP from cardiomyocytes during ischemia is not known. In this study, we investigated whether and how the release of ATP was strictly regulated during ischemia in cultured neonatal rat cardiomyocytes. Ischemia was mimicked by oxygen-glucose deprivation (OGD). Exposure of cardiomyocytes to OGD resulted in an increase in the concentration of extracellular ATP shortly after the onset of OGD (15 min), and the increase was reversed by treatment with blockers of maxi-anion channels. Unexpectedly, at 1 and 2h after the onset of OGD, the blocking of maxi-anion channels increased the concentration of extracellular ATP, and the increase was significantly suppressed by co-treatment with blockers of hemichannels, suggesting that ATP release via maxi-anion channels was involved in the suppression of ATP release via hemichannels during persistent OGD. Here we show the possibility that the release of ATP from cardiomyocytes was strictly regulated during ischemia by negative-feedback mechanisms; that is, maxi-anion channel-derived ATP-induced suppression of ATP release via hemichannels in cardiomyocytes.  相似文献   

20.
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP3elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号