共查询到20条相似文献,搜索用时 15 毫秒
1.
M.S. Pochechuev I.V. Fedotov O.I. Ivashkina M.A. Roshchina K.V. Anokhin A.M. Zheltikov 《Journal of biophotonics》2018,11(1)
Optical coupling between a single, individually addressable neuron and a properly designed optical fiber is demonstrated. Two‐photon imaging is shown to enable a quantitative in situ analysis of such fiber–single‐neuron coupling in the live brain of transgenic mice. Fiber‐optic interrogation of single pyramidal neurons in mouse brain cortex is performed with the positioning of the fiber probe relative to the neuron accurately mapped by means of two‐photon imaging. These results pave the way for fiber‐optic interfaces to single neurons for a stimulation and interrogation of individually addressable brain cells in chronic in vivo studies on freely behaving transgenic animal models, as well as the integration of fiber‐optic single‐neuron stimulation into the optical imaging framework.
2.
Imaging directed photothermolysis through two‐photon absorption demonstrated on mouse skin – a potential novel tool for highly targeted skin treatment 下载免费PDF全文
Anthony M.D. Lee Jianhua Zhao Harvey Lui David I. McLean Haishan Zeng 《Journal of biophotonics》2014,7(7):534-541
One‐photon absorption based traditional laser treatment may not necessarily be selective at the microscopic level, thus could result in un‐intended tissue damage. Our objective is to test whether two‐photon absorption (TPA) could provide highly targeted tissue alteration of specific region of interest without damaging surrounding tissues. TPA based laser treatments (785 nm, 140 fs pulse width, 90 MHz) were performed on ex vivo mouse skin using different average power levels and irradiation times. Reflectance confocal microscopy (RCM) and combined second‐harmonic‐generation (SHG) and two‐photon fluorescence (TPF) imaging channels were used to image before, during, and after each laser treatment. The skin was fixed, sectioned and H & E stained after each experiment for histological assessment of tissue alterations and for comparison with the non‐invasive imaging assessments. Localized destruction of dermal fibers was observed without discernible epidermal damage on both RCM and SHG + TPF images for all the experiments. RCM and SHG + TPF images correlated well with conventional histological examination. This work demonstrated that TPA‐based light treatment provides highly localized intradermal tissue alteration. With further studies on optimizing laser treatment parameters, this two‐photon absorption photothermolysis method could potentially be applied in clinical dermatology. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
Aleksandr A. Lanin Artem S. Chebotarev Natalia V. Barykina Fedor V. Subach Aleksei M. Zheltikov 《Journal of biophotonics》2019,12(5)
We present one‐ and two‐photon‐absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore–based single‐domain near‐infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV‐based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red‐shift tunability of currently available BV‐based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two‐photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors. 相似文献
4.
Rudzani Malabi Sello Lebohang Manoto Saturnin Ombinda‐Lemboumba Malik Maaza Patience Mthunzi‐Kufa 《Journal of biophotonics》2019,12(10)
The introduction of highly active antiretroviral therapy (HAART) has significantly increased life expectancy and improved management of the human immunodeficiency virus‐1 (HIV‐1) disease globally. This well‐established treatment regime has shown to reduce viral capacity to undetectable limits when using traditional clinical assays. The establishment of viral reservoirs during the early stages of infection are the major contributors to failure of the current regimens to eradicate HIV‐1 infection since the reservoirs are not affected by antiretroviral drugs (ARVs). Therefore, advanced modification of the present treatment and investigation of novel antiretroviral drug delivery system are needed. The aim of this study was to use femtosecond (fs) laser pulses to deliver ARVs into HIV‐1 infected TZMbl cells. Different ARVs were translocated into TZMbl cells using fs pulsed laser (800 nm) with optimum power of 4 μW and 10 ms laser to cell exposure time. Changes in cellular processes were evaluated using cellular morphology, viability, cytotoxicity and luciferase activity assays. Cells treated with the laser in the presence of ARVs showed a significant reduction in viral infectivity, cell viability and an increase in cytotoxicity. This study demonstrated that fs laser pulses were highly effective in delivering ARVs into HIV‐1 infected TZMbl cells, causing a significant reduction in HIV‐1 infection. 相似文献
5.
Shu Wang Bingbing Lin Guimin Lin Ruolan Lin Feng Huang Weilin Liu Xingfu Wang Xueyong Liu Yu Zhang Feng Wang Yuanxiang Lin Lidian Chen Jianxin Chen 《Journal of biophotonics》2020,13(1)
Stroke is a significant cause of morbidity and long‐term disability globally. Detection of injured neuron is a prerequisite for defining the degree of focal ischemic brain injury, which can be used to guide further therapy. Here, we demonstrate the capability of two‐photon microscopy (TPM) to label‐freely identify injured neurons on unstained thin section and fresh tissue of rat cerebral ischemia‐reperfusion model, revealing definite diagnostic features compared with conventional staining images. Moreover, a deep learning model based on convolutional neural network is developed to automatically detect the location of injured neurons on TPM images. We then apply deep learning‐assisted TPM to evaluate the ischemic regions based on tissue edema, two‐photon excited fluorescence signal intensity, as well as neuronal injury, presenting a novel manner for identifying the infarct core, peri‐infarct area, and remote area. These results propose an automated and label‐free method that could provide supplementary information to augment the diagnostic accuracy, as well as hold the potential to be used as an intravital diagnostic tool for evaluating the effectiveness of drug interventions and predicting potential therapeutics. 相似文献
6.
Ikue Kikuchi Yuji Nakayama Takao Morinaga Yasunori Fukumoto Naoto Yamaguchi 《Cell biology international》2010,34(6):645-653
Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration‐dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin‐induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated β‐galactosidase activity. In DNA damage‐induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage‐induced senescence. 相似文献
7.
DNA damage‐induced replication stress results in PA200‐proteasome‐mediated degradation of acetylated histones 下载免费PDF全文
Imke K Mandemaker Marit E Geijer Iris Kik Karel Bezstarosti Erikjan Rijkers Anja Raams Roel C Janssens Hannes Lans Jan HJ Hoeijmakers Jeroen AA Demmers Wim Vermeulen Jurgen A Marteijn 《EMBO reports》2018,19(10)
8.
Persistent DNA damage‐induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells 下载免费PDF全文
Giovanna Gambarotta Marco Lo Iacono Lisa Accomasso Elisa Cibrario Rocchietti Clara Gallina Valentina Turinetto Claudia Giachino 《Journal of cellular and molecular medicine》2015,19(4):734-743
Human mesenchymal stem cells (hMSCs) are adult multipotent stem cells located in various tissues, including the bone marrow. In contrast to terminally differentiated somatic cells, adult stem cells must persist and function throughout life to ensure tissue homeostasis and repair. For this reason, they must be equipped with DNA damage responses able to maintain genomic integrity while ensuring their lifelong persistence. Evaluation of hMSC response to genotoxic insults is of great interest considering both their therapeutic potential and their physiological functions. This study aimed to investigate the response of human bone marrow MSCs to the genotoxic agent Actinomycin D (ActD), a well‐known anti‐tumour drug. We report that hMSCs react by undergoing premature senescence driven by a persistent DNA damage response activation, as hallmarked by inhibition of DNA synthesis, p21 and p16 protein expression, marked Senescent Associated β‐galactosidase activity and enlarged γH2AX foci co‐localizing with 53BP1 protein. Senescent hMSCs overexpress several senescence‐associated secretory phenotype (SASP) genes and promote motility of lung tumour and osteosarcoma cell lines in vitro. Our findings disclose a multifaceted consequence of ActD treatment on hMSCs that on the one hand helps to preserve this stem cell pool and prevents damaged cells from undergoing neoplastic transformation, and on the other hand alters their functional effects on the surrounding tissue microenvironment in a way that might worsen their tumour‐promoting behaviour. 相似文献
9.
Qiang Li Qizhao Wang Linlin Li Lijun Yang Yang Wang Xiaohui Wang Hai‐Tao Fang 《Liver Transplantation》2020,10(24)
The capacitance of microsupercapacitors (MSCs) can double if both sides of substrates are used to construct MSCs. Nevertheless, achieving electric connections of MSCs through substrates is a challenge due to the difficulty in precisely positioning each MSC couple that has two of the same MSCs units on two sides. In this work, taking advantage of the synchronous etching on both sides of transparent polyethylene terephthalate substrates by femtosecond laser pulses, a double‐sided configuration is attained with high precision in the alignment of back‐to‐back MSC couples and versatile double‐side MSCs are realized via arbitrary on‐ and through‐substrate connections of MXene MSC units. The MXene double‐side MSC fabricated by the series connection of 12 spiral pattern MXene MSC units with interdigital electrodes of 10 μm width interspace can output a large working voltage of 7.2 V. Additionally, femtosecond laser etching brings the transformation of MXene into titania near‐etched edges with a lateral distance less than 1 µm. Such a small laser‐affected area has little influence on the capacitive performance, which is one of advantages for femtosecond laser over conventional lasers. This research is valuable for one‐step manufacturing of highly integrated MSCs in the field of miniaturized energy storage systems. 相似文献
10.
11.
Mapping DNA damage‐dependent genetic interactions in yeast via party mating and barcode fusion genetics 下载免费PDF全文
J Javier Díaz‐Mejía Albi Celaj Joseph C Mellor Atina Coté Attila Balint Brandon Ho Pritpal Bansal Fatemeh Shaeri Marinella Gebbia Jochen Weile Marta Verby Anna Karkhanina YiFan Zhang Cassandra Wong Justin Rich D'Arcy Prendergast Gaurav Gupta Sedide Öztürk Daniel Durocher Grant W Brown Frederick P Roth 《Molecular systems biology》2018,14(5)
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. 相似文献
12.
13.
14.
The cohesin complex is required for the DNA damage‐induced G2/M checkpoint in mammalian cells 下载免费PDF全文
Jan‐Michael Peters 《The EMBO journal》2009,28(17):2625-2635
Cohesin complexes mediate sister chromatid cohesion. Cohesin also becomes enriched at DNA double‐strand break sites and facilitates recombinational DNA repair. Here, we report that cohesin is essential for the DNA damage‐induced G2/M checkpoint. In contrast to cohesin's role in DNA repair, the checkpoint function of cohesin is independent of its ability to mediate cohesion. After RNAi‐mediated depletion of cohesin, cells fail to properly activate the checkpoint kinase Chk2 and have defects in recruiting the mediator protein 53BP1 to DNA damage sites. Earlier work has shown that phosphorylation of the cohesin subunits Smc1 and Smc3 is required for the intra‐S checkpoint, but Smc1/Smc3 are also subunits of a distinct recombination complex, RC‐1. It was, therefore, unknown whether Smc1/Smc3 function in the intra‐S checkpoint as part of cohesin. We show that Smc1/Smc3 are phosphorylated as part of cohesin and that cohesin is required for the intra‐S checkpoint. We propose that accumulation of cohesin at DNA break sites is not only needed to mediate DNA repair, but also facilitates the recruitment of checkpoint proteins, which activate the intra‐S and G2/M checkpoints. 相似文献
15.
16.
17.
Ex and in vivo characterization of the wavelength‐dependent 3‐photon action cross‐sections of red fluorescent proteins covering the 1700‐nm window 下载免费PDF全文
Multiphoton action cross‐sections are the prerequisite for excitation light selection. At the 1700‐nm window suitable for deep‐tissue imaging, wavelength‐dependent 3‐photon action cross‐sections ησ3 for RFPs are unknown, preventing wavelength selection. Here we demonstrate: (1) ex vivo measurement of wavelength‐dependent ησ3 for purified RFPs; (2) a multiphoton imaging guided measurement system for in vivo measurement; and (3) in vivo measurement of wavelength‐dependent ησ3 in RFP labeled cells. These fundamental results will provide guidelines for excitation wavelength selection for 3‐photon fluorescence imaging of RFPs at the 1700‐nm window, and augment the existing database of multiphoton action cross‐sections for fluorophores. 相似文献
18.
Qian Qiao Lei Ma Wei Li Jin‐Wu Tsai Guang Yang Wen‐Biao Gan 《Developmental neurobiology》2016,76(3):252-261
Many lines of evidence indicate that postsynaptic dendritic spines are plastic during development and largely stable in adulthood. It remains unclear to what degree presynaptic axonal terminals undergo changes in the developing and mature cortex. In this study, we examined the formation and elimination of fluorescently‐labeled axonal boutons in the living mouse barrel cortex with transcranial two‐photon microscopy. We found that the turnover of axonal boutons was significantly higher in 3‐week‐old young mice than in adult mice (older than 3 months). There was a slight but significant net loss of axonal boutons in mice from 1 to 2 months of age. In both young and adult barrel cortex, axonal boutons existed for at least 1 week were less likely to be eliminated than those recently‐formed boutons. In adulthood, 80% of axonal boutons persisted over 12 months and enriched sensory experience caused a slight but not significant increase in the turnover of axonal boutons over 2–4 weeks. Thus, similar to postsynaptic dendritic spines, presynaptic axonal boutons show remarkable stability after development ends. This long‐term stability of synaptic connections is likely important for reliable sensory processing in the mature somatosensory cortex. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 252–261, 2016 相似文献
19.
Elastic fibers are key constituents of the skin. The commonly adopted optical technique for visualizing elastic fibers in the animal skin in vivo is 2‐photon microscopy (2 PM) of autofluorescence, which typically suffers from low signal level. Here we demonstrate a new optical methodology to image elastic fibers in animal models in vivo: 3‐photon microscopy (3 PM) excited at the 1700‐nm window combining with preferential labeling of elastic fibers using sulforhodamine B (SRB). First, we demonstrate that intravenous injection of SRB can circumvent the skin barrier (encountered in topical application) and preferentially label elastic fibers, as verified by simultaneous 2 PM of both autofluorescence and SRB fluorescence from skin structures. Then through 3‐photon excitation property characterization, we show that 3‐photon fluorescence can be excited from SRB at the 1700‐nm window, and 1600‐nm excitation is most efficient according to our 3‐photon action cross section measurement. Based on these results and using our developed 1600‐nm femtosecond laser source, we finally demonstrate 3 PM of SRB‐labeled elastic fibers through the whole dermis in the mouse skin in vivo, with only 3.7‐mW optical power deposited on the skin surface. We expect our methodology will provide novel optical solution to elastic fiber research. 相似文献
20.
D. Hellwig S. Münch S. Orthaus C. Hoischen P. Hemmerich S. Diekmann 《Journal of biophotonics》2008,1(3):245-254
At the centromere, a network of proteins, the kinetochore, assembles in order to grant correct chromatin segregation. In this study the dynamics and molecular interactions of the inner kinetochore protein CENP‐T were analyzed employing a variety of fluorescence microscopy techniques in living human cells. Acceptor‐bleaching FRET indicates that CENP‐T directly associates with CENP‐A and CENP‐B. CENP‐T exchange into centromeres is restricted to the S‐phase of the cell cycle as revealed by FRAP, suggesting a coreplicational loading mechanism, as we have recently also demonstrated for CENP‐I. These properties make CENP‐T one of the basic inner kinetochore proteins with most further proteins binding downstream, suggesting a fundamental role of CENP‐T in kinetochore function. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献