首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A profound remodeling of the extracellular matrix occurs in many epithelial cancers. In ovarian cancer, the minor collagen isoform of Col III becomes upregulated in invasive disease. Here we use second harmonic generation (SHG) imaging microscopy to probe structural differences in fibrillar models of the ovarian stroma comprised of mixtures of Col I and III. The SHG intensity and forward-backward ratios decrease with increasing Col III content, consistent with decreased phasematching due to more randomized structures. We further probe the net collagen α-helix pitch angle within the gel mixtures using what is believed to be a new pixel-based polarization-resolved approach that combines and extends previous analyses. The extracted pitch angles are consistent with those of peptide models and the method has sufficient sensitivity to differentiate Col I from the Col I/Col III mixtures. We further developed the pixel-based approach to extract the SHG signal polarization anisotropy from the same polarization-resolved image matrix. Using this approach, we found that increased Col III results in decreased alignment of the dipole moments within the focal volume. Collectively, the SHG measurements and analysis all indicate that incorporation of Col III results in decreased organization across several levels of collagen organization. Furthermore, the findings suggest that the collagen isoforms comingle within the same fibrils, in good agreement with ultrastructural data. The pixel-based polarization analyses (both excitation and emission) afford determination of structural properties without the previous requirement of having well-aligned fibers, and the approaches should be generally applicable in tissue.  相似文献   

2.
A profound remodeling of the extracellular matrix occurs in many epithelial cancers. In ovarian cancer, the minor collagen isoform of Col III becomes upregulated in invasive disease. Here we use second harmonic generation (SHG) imaging microscopy to probe structural differences in fibrillar models of the ovarian stroma comprised of mixtures of Col I and III. The SHG intensity and forward-backward ratios decrease with increasing Col III content, consistent with decreased phasematching due to more randomized structures. We further probe the net collagen α-helix pitch angle within the gel mixtures using what is believed to be a new pixel-based polarization-resolved approach that combines and extends previous analyses. The extracted pitch angles are consistent with those of peptide models and the method has sufficient sensitivity to differentiate Col I from the Col I/Col III mixtures. We further developed the pixel-based approach to extract the SHG signal polarization anisotropy from the same polarization-resolved image matrix. Using this approach, we found that increased Col III results in decreased alignment of the dipole moments within the focal volume. Collectively, the SHG measurements and analysis all indicate that incorporation of Col III results in decreased organization across several levels of collagen organization. Furthermore, the findings suggest that the collagen isoforms comingle within the same fibrils, in good agreement with ultrastructural data. The pixel-based polarization analyses (both excitation and emission) afford determination of structural properties without the previous requirement of having well-aligned fibers, and the approaches should be generally applicable in tissue.  相似文献   

3.
Interpreting second-harmonic generation images of collagen I fibrils   总被引:12,自引:0,他引:12       下载免费PDF全文
Fibrillar collagen, being highly noncentrosymmetric, possesses a tremendous nonlinear susceptibility. As a result, second-harmonic generation (SHG) microscopy of collagen produces extremely bright and robust signals, providing an invaluable tool for imaging tissue structure with submicron resolution. Here we discuss fundamental principles governing SHG phase matching with the tightly focusing optics used in microscopy. Their application to collagen imaging yields several biophysical features characteristic of native collagen structure: SHG radiates from the shell of a collagen fibril, rather than from its bulk. This SHG shell may correspond to the supporting element of the fibril. Physiologically relevant changes in solution ionic strength alter the ratio of forward-to-backward propagating SHG, implying a resulting change in the SHG shell thickness. Fibrillogenesis can be resolved in immature tissue by directly imaging backward-propagating SHG. Such findings are crucial to the design and development of forthcoming diagnostic and research tools.  相似文献   

4.
Collagen is a triple-helical protein that forms various macromolecular organizations in tissues and is responsible for the biomechanical and physical properties of most organs. Second-harmonic generation (SHG) microscopy is a valuable imaging technique to probe collagen fibrillar organization. In this article, we use a multiscale nonlinear optical formalism to bring theoretical evidence that anisotropy of polarization-resolved SHG mostly reflects the micrometer-scale disorder in the collagen fibril distribution. Our theoretical expectations are confirmed by experimental results in rat-tail tendon. To that end, we report what to our knowledge is the first experimental implementation of polarization-resolved SHG microscopy combined with mechanical assays, to simultaneously monitor the biomechanical response of rat-tail tendon at macroscopic scale and the rearrangement of collagen fibrils in this tissue at microscopic scale. These experiments bring direct evidence that tendon stretching corresponds to straightening and aligning of collagen fibrils within the fascicle. We observe a decrease in the SHG anisotropy parameter when the tendon is stretched in a physiological range, in agreement with our numerical simulations. Moreover, these experiments provide a unique measurement of the nonlinear optical response of aligned fibrils. Our data show an excellent agreement with recently published theoretical calculations of the collagen triple helix hyperpolarizability.  相似文献   

5.
We show that structural protein arrays consisting largely of collagen, myosin, and tubulin, and their associated proteins can be imaged in three dimensions with high contrast and resolution by laser-scanning second harmonic generation (SHG) microscopy. SHG is a nonlinear optical scheme and this form of microscopy shares several common advantages with multiphoton excited fluorescence, namely, intrinsic three-dimensionality and reduced out-of-plane photobleaching and phototoxicity. SHG does not arise from absorption and in-plane photodamage considerations are therefore also greatly reduced. In particular, structural protein arrays that are highly ordered and birefringent produce large SHG signals without the need for any exogenous labels. We demonstrate that thick tissues including muscle and bone can be imaged and sectioned through several hundred micrometers of depth. Combining SHG with two-photon excited green fluorescent protein (GFP) imaging allows inference of the molecular origin of the SHG contrast in Caenorhabditis elegans sarcomeres. Symmetry and organization of microtubule structures in dividing C. elegans embryos are similarly studied by comparing the endogenous tubulin contrast with that of GFP::tubulin fluorescence. It is found that SHG provides molecular level data on radial and lateral symmetries that GFP constructs cannot. The physical basis of SHG is discussed and compared with that of two-photon excitation as well as that of polarization microscopy. Due to the intrinsic sectioning, lack of photobleaching, and availability of molecular level data, SHG is a powerful tool for in vivo imaging.  相似文献   

6.
Polarization‐dependent second‐harmonic generation (P‐SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three‐dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference and , where the latter is a newly extracted parameter from the P‐SHG images and is related to the chiral structure of collagen. The is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P‐SHG imaging was performed using a linear polarization‐in polarization‐out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation‐independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.   相似文献   

7.
Using second harmonic generation (SHG) imaging microscopy, we have examined the effect of optical clearing with glycerol to achieve greater penetration into specimens of skeletal muscle tissue. We find that treatment with 50% glycerol results in a 2.5-fold increase in achievable SHG imaging depth. Signal processing analyses using fast Fourier transform and continuous wavelet transforms show quantitatively that the periodicity of the sarcomere structure is unaltered by the clearing process and that image quality deep in the tissue is improved with clearing. Comparison of the SHG angular polarization dependence also shows no change in the supramolecular organization of acto-myosin complexes. By contrast, identical treatment of mouse tendon (collagen based) resulted in a strong decrease in SHG response. We suggest that the primary mechanism of optical clearing in muscle with glycerol treatment results from the reduction of cytoplasmic protein concentration and concomitant decrease in the secondary inner filter effect on the SHG signal. The lack of glycerol concentration dependence on the imaging depth indicates that refractive index matching plays only a minor role in the optical clearing of muscle. SHG and optical clearing may provide an ideal mechanism to study physiology in highly scattering skeletal or cardiac muscle tissue with significantly improved depth of penetration and achievable imaging depth.  相似文献   

8.
Due to specific structural organization at the molecular level, several biomolecules (e.g., collagen, myosin etc.) which are strong generators of second harmonic generation (SHG) signals, exhibit unique responses depending on the polarization of the excitation light. By using the polarization second harmonic generation (p‐SHG) technique, the values of the second order susceptibility components can be used to differentiate the types of molecule, which cannot be done by the use of a standard SHG intensity image. In this report we discuss how to implement p‐SHG on a commercial multiphoton microscope and overcome potential artifacts in susceptibility (χ) image. Furthermore we explore the potential of p‐SHG microscopy by applying the technique to different types of tissue in order to determine corresponding reference values of the ratio of second‐order χ tensor elements. These values may be used as a bio‐marker to detect any structural alterations in pathological tissue for diagnostic purposes.

The SHG intensity image (red) in ( a ) shows the distribution of collagen fibers in ovary tissue but cannot determine the type of collagen fiber. However, the histogram distribution ( b ) for the values of the χ tensor element ratio can be used to quantitatively identify the types of collagen fibers.  相似文献   


9.
Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a two‐dimensional discrete Fourier transform (DFT)–based method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid‐stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide‐angle X‐ray scattering and application of the presented method to other fibrous tissues.   相似文献   

10.
Several specific alterations of the extracellular matrix can be considered a distinctive hallmark of cancer. In particular, a different morphology of the collagen scaffold is frequently found within the peritumoural environment. In this study, we report about a significant difference in the ultrastructural organization of collagen at the supra‐molecular level between the perilesional scaffold and the tumour area in human breast carcinoma samples. In particular, we demonstrated that polarization‐resolved second‐harmonic generation (P‐SHG) microscopy is able to link the altered collagen architecture at the ultrastructural level found in perilesional tissue with a different organization of collagen fibrils at the molecular level.  相似文献   

11.
Rehberg M  Krombach F  Pohl U  Dietzel S 《PloS one》2011,6(11):e28237
Second and Third Harmonic Generation (SHG and THG) microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus) muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy.  相似文献   

12.
The role of backscattering in SHG tissue imaging   总被引:1,自引:0,他引:1       下载免费PDF全文
We investigate the properties of second-harmonic generation (SHG) tissue imaging for the functional biological unit fascia, skeletal muscle, and tendon. Fascia and Achilles tendon primarily consist of similar collagen type I arrays that can be imaged using SHG microscopy. For muscle, it is the myosin molecules represented within the A bands. For fascia and tendon tissue samples, we observe, in addition to a stronger signal in forward images, vastly different features for the backward versus the forward images. In vivo as well as intact ex vivo thick tissue imaging requires backward detection. The obtained image is a result of the direct backward components plus a certain fraction of the forward components that are redirected (backscattered) toward the objective as they propagate within the tissue block. As the forward and the backward images are significantly different from each other for the imaged collagen type I tissue, it is crucial to determine the fraction of the forward signal that contributes to the overall backward signal. For intact ex vivo SHG imaging of Achilles tendon, we observe a significant contribution of forward features in the resulting image. For fascia, the connective tissue immediately surrounding muscle, we only observe backward features, due to low backscattering in muscle.  相似文献   

13.
All‐optical microspectroscopic and tomographic tools have a great potential for the clinical investigation of human skin and skin diseases. However, automated optical tomography or even microscopy generate immense data sets. Therefore, in order to implement such diagnostic tools into the medical practice in both hospitals and private practice, there is a need for automated data handling and image analysis ideally implementing automized scores to judge the physiological state of a tissue section. In this contribution, the potential of an image processing algorithm for the automated classification of skin into normal or keloid based on second‐harmonic generation (SHG) microscopic images is demonstrated. Such SHG data is routinely recorded within a multimodal imaging approach. The classification of the tissue implemented in the algorithm employs the geometrical features of collagen patterns that differ depending on the constitution, i.e., physiological status of the skin. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue''s morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE) and Second Harmonic signal Generation (SHG). No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (BSHG) alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression.  相似文献   

15.
王毅  鲍进  盛巡  李萍  马辉 《激光生物学报》2005,14(4):274-278
目的:用光学二次谐波成像的方法比较成熟皮肤与新生皮肤内不同种类胶原的含量,以及正常皮肤与创伤皮肤内胶原种类的变化。方法:用前向及背向二次谐波观察正常及创伤皮肤内的胶原,并与传统的天狼猩红染色法相对照。结果:与传统方法相比,二次谐波可以更快速,更灵敏地检测组织中的胶原。背向二次谐波信号强度随着切片厚度的增加而增强。结论:光学二次谐波成像技术是一种灵敏、简单、快速检测皮肤组织内胶原的新方法,具有很好的应用前景,可应用于活体检测。  相似文献   

16.
According to previous studies, the nonlinear susceptibility tensor ratio χ33/χ31 obtained from polarization‐resolved second harmonic generation (P‐SHG) under the assumption of cylindrical symmetry can be used to distinguish between fibrillar collagen types. Discriminating between collagen fibrils of types I and II is important in tissue engineering of cartilage. However, cartilage has a random organization of collagen fibrils, and the assumption of cylindrical symmetry may be incorrect. In this study, we simulated the P‐SHG response from different collagen organizations and demonstrated a possible method to exclude areas where cylindrical symmetry is not fulfilled and where fibrils are located in the imaging plane. The χ33/χ31‐ratio for collagen type I in tendon and collagen type II in cartilage was estimated to be 1.33 and 1.36, respectively, using this method. These ratios are now much closer than what has been reported previously in the literature, and the larger reported differences between collagen types can be explained by variation in the structural organization.   相似文献   

17.
Imaging tissue samples by polarization‐resolved second harmonic generation microscopy provides both qualitative and quantitative insights into collagen organization in a label‐free manner. Polarization‐resolved second harmonic generation microscopy goes beyond simple intensity‐based imaging by adding the laser beam polarization component and applying different quantitative metrics such as the anisotropy factor. It thus provides valuable information on collagen arrangement not available with intensity measurements alone. Current established approaches are limited to calculating the anisotropy factor for only a particular laser beam polarization and no general guidelines on how to select the best laser beam polarization have yet been defined. Here, we introduce a novel methodology for selecting the optimal laser beam polarization for characterizing tissues using the anisotropy in the purpose of identifying cancer signatures. We show that the anisotropy factor exhibits a similar laser beam polarization dependence to the second harmonic intensity and we combine it with the collagen orientation index computed by Fast Fourier Transform analysis of the recorded images to establish a framework for choosing the laser beam polarization that is optimal for an accurate interpretation of polarization‐resolved second harmonic generation microscopy images and anisotropy maps, and hence a better differentiation between healthy and dysplastic areas.

SHG image of skin tissue (a) and a selected area of interest for which we compute the SHG intensity (b) and anisotropy factor (c) dependence on the laser beam polarization and also the FFT spectrum (d) to evaluate the collagen orientation index.  相似文献   


18.
Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our understanding of collagen fibril formation and remodelling, e.g. in tissue engineering experiments. A recently developed collagen probe, based on a natural collagen binding protein (CNA35) conjugated to a fluorescent dye, showed to be much more specific to collagen than existing fluorescent techniques currently used for collagen visualisation in live tissues. In this paper, imaging with this fluorescent CNA35 probe was compared to imaging with second harmonic generation (SHG) and the imaging of two- and three-dimensional collagen organisation was further developed. A range of samples (cell culture, blood vessels and engineered tissues) was imaged to illustrate the potential of this collagen probe. This images of collagen organisation showed improved detail compared to images generated with SHG, which is currently the most effective method for viewing three-dimensional collagen organisation in tissues. In conclusion, the fluorescent CNA35 probe allows easy access to high resolution imaging of collagen, ranging from very young fibrils to more mature collagen fibres. Furthermore, this probe enabled real-time visualisation of collagen synthesis in cell culture, which provides new opportunities to study collagen synthesis and remodelling.  相似文献   

19.

Background

Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet’s membrane, in the posterior cornea.

Methodology/Principal Findings

We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet’s membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats.

Conclusions/Significance

Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.  相似文献   

20.
Triple‐negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African‐American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time‐consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label‐free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole‐tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号