首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
The purpose of this study is to investigate the effects of euphorbiasteroid, a component of Euphorbia lathyris L., on adipogenesis of 3T3‐L1 pre‐adipocytes and its underlying mechanisms. Euphorbiasteroid decreased differentiation of 3T3‐L1 cells via reduction of intracellular triglyceride (TG) accumulation at concentrations of 25 and 50 μM. In addition, euphorbiasteroid altered the key regulator proteins of adipogenesis in the early stage of adipocyte differentiation by increasing the phosphorylation of AMP‐activated protein kinase (AMPK) and acetyl‐CoA carboxylase. Subsequently, levels of adipogenic proteins, including fatty acid synthase, peroxisome proliferator‐activated receptor‐γ and CCAAT/enhancer‐binding protein α, were decreased by euphorbiasteroid treatment at the late stage of adipocyte differentiation. The anti‐adipogenic effect of euphorbiasteroid may be derived from inhibition of early stage of adipocyte differentiation. Taken together, euphorbiasteroid inhibits adipogenesis of 3T3‐L1 cells through activation of the AMPK pathway. Therefore, euphorbiasteroid and its source plant, E. lathyris L., could possibly be one of the fascinating anti‐obesity agent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
9.
10.
Amyloid precursor protein (APP) has been characterized as an adipocyte‐secreted protein that might contribute to obesity‐related insulin resistance, inflammation, and dementia. In the current study, regulation of APP by the proinflammatory and insulin resistance‐inducing cytokine tumor necrosis factor (TNF) α was determined in 3T3‐L1 adipocytes. Interestingly, APP protein synthesis and mRNA expression were significantly increased by TNFα in a time‐dependent manner with maximal induction observed after 24 h of treatment. Furthermore, TNFα induced APP mRNA expression dose‐dependently with maximal 6.4‐fold upregulation seen at 100 ng/ml effector. Moreover, inhibitor experiments suggested that TNFα‐induced APP expression was mediated by nuclear factor κ B. Taken together, we show for the first time a potent upregulation of APP by TNFα suggesting a potential role of this adipocyte‐secreted protein in TNFα‐induced insulin resistance and inflammatory disease. J. Cell. Biochem. 108: 1418–1422, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
13.
Ghrelin is a physiological‐active peptide with growth hormone‐releasing activity, orexigenic activity, etc. In addition, the recent study has also suggested that ghrelin possesses the pathophysiological abilities related with type 2 diabetes. However, the ghrelin‐direct‐effects implicated in type 2 diabetes on peripheral tissues have been still unclear, whereas its actions on the central nervous system (CNS) appear to induce the development of diabetes. Thus, to assess its peripheral effects correlated with diabetes, we investigated the regulatory mechanisms about adipokines, which play a central role in inducing peripheral insulin resistance, secreted from mature 3T3‐L1 adipocytes stimulated with ghrelin in vitro . The stimulation with 50 nmol/L ghrelin for 24 h resulted in the significant 1.9‐fold increase on vascular endothelial growth factor‐120 (VEGF120) releases (p < 0.01) and the 1.7‐fold on monocyte chemoattractant protein‐1 (MCP‐1) (p < 0.01) from 3T3‐L1 adipocytes, respectively, while ghrelin failed to enhance tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, IL‐10 and adiponectin secretions. In addition, Akt phosphorylation on Ser473 and c‐Jun NH2‐terminal protein kinase (JNK) phosphorylation on Thr183/Tyr185 were markedly enhanced 1.4‐fold (p < 0.01) and 1.6‐fold (p < 0.01) in the ghrelin‐stimulated adipocytes, respectively. Furthermore, the treatment with LY294002 (50 μmol/L) and Wortmannin (10nmol/L), inhibitors of phosphatidylinositol 3‐kinase (PI3K), significantly decreased the amplified VEGF120 secretion by 29% (p < 0.01) and 28% (p < 0.01) relative to the cells stimulated by ghrelin alone, respectively, whereas these inhibitors had no effects on increased MCP‐1 release. On the other hand, JNK inhibitor SP600125 (10 μmol/L) clearly reduced the increased MCP‐1, but not VEGF120, release by 35% relative to the only ghrelin‐stimulated cells (p < 0.01). In conclusion, ghrelin can enhance the secretions of proinflammatory adipokines, VEGF120 and MCP‐1, but fails to affect IL‐10 and adiponectin which are considered to be anti‐inflammatory adipokines. Moreover, this augmented VEGF120 release is invited through the activation of PI3K pathways and the MCP‐1 is through JNK pathways. Consequently, our results strongly suggest that ghrelin can induce the development of diabetes via its direct‐action in peripheral tissues as well as via in CNS. J. Cell. Physiol. 230: 199–209, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

14.
It has been reported that obestatin regulates adipocyte metabolism via receptors on the cell surface. We wondered whether obestatin can interact with intracellular components that activated signalling pathways in adipocytes. Because obestatin (human) only presents one lysine (at position 10), which cannot penetrate the cell membrane, therefore, we used a cell‐permeable peptide TAT (49‐57) as a vector to carry obestatin across the cell membrane. The goal of this study was to further understand the function of obestatin after penetrating the cell membrane. Our results showed that TAT‐obestatin could cross the 3T3‐L1 cell membrane in the absence of cytotoxicity. TAT‐obestatin showed no effect on the proliferation of 3T3‐L1 preadipocytes. In contrast, obestatin significantly stimulated proliferation at a dose of 10‐11 M and 10‐13 M. In addition, TAT‐obestatin demonstrated a more potent inhibitory effect on cell apoptosis induced by serum starvation than that of obestatin. During the progress of adipocyte differentiation, TAT‐obestatin and obestatin had no effect on adipogenesis. In the lipolysis assay, TAT‐obestatin significantly increased glycerol and free fatty acid release from 3T3‐L1 adipocytes after 3 h treatment but showed no significant effect on lipolysis after 24 h and 48 h of treatment. In contrast, obestatin (10‐7 M) had no effect on glycerol release after 3, 24 and 48 h of treatment. The difference between the effect of TAT‐obestatin and obestatin on adipocytes metabolism indicated that TAT‐obestatin may trigger intracellular signalling as well as signalling at the cell membrane. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
16.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

17.
18.
Lipophilic insect hormones and their analogs affect mammalian physiology by regulating the expression of metabolic genes. Therefore, we determined the effect of fenoxycarb, a juvenile hormone analog, on lipid metabolism in adipocytes. Here, we demonstrated that fenoxycarb dose‐dependently promoted lipid accumulation in 3T3‐L1 adipocytes during adipocyte differentiation and that its lipogenic effect was comparable to that of rosiglitazone, a well‐known ligand for peroxisome proliferator‐activated receptor gamma (PPARγ). Furthermore, fenoxycarb stimulated PPARγ activity without affecting other nuclear receptors, such as liver X receptor (LXR), farnesoid X‐activated receptor (FXR) and Nur77. In addition, fenoxycarb treatment increased the expression of PPARγ and fatty acid transporter protein 1 (FATP1) in 3T3‐L1 adipocytes, suggesting that fenoxycarb may facilitate adipocyte differentiation by enhancing PPARγ signaling, the master regulator of adipogenesis. Together, our results suggest that fenoxycarb promoted lipid accumulation in adipocytes, in part, by stimulating PPARγ.  相似文献   

19.
Recent epidemiologic studies pointed out a significant correlation between dietary monosodium glutamate (MSG) and increased body mass index. Corroborating evidences came from animal studies depicting a clear association between dietary MSG intake and increased abdominal fat, dyslipidemia, adipocyte hypertrophy, and total body weight gain. Taken together with the inferred absence of conspicuous hypothalamic neuropathies the hallmark of disease etiopathogenesis in MSG‐obese animals, these animal studies with dietary MSG strongly argue for the presence of an alternative non‐neuronal route for MSG to mediate its adipose tissue‐specific phenotype and body weight gain. On the basis of this hypothesis, we investigated the direct effect of physiologically relevant low (100 µM), moderate (250 µM), and high dosages (2.5 and 25 mM) of MSG on distinct phases of adipocyte differentiation. MSG‐dependent changes in cell proliferation and lipid accumulation were analyzed by cell proliferation assays, flow cytometry, and biochemical methods, respectively. Physiologically relevant high dosages MSG demonstrated a significant potential in reducing MCE and thereof adipogenic capacity of preadipocytes in a dose‐dependent manner by restricting the availability of critical mitogenic proteins, CCAAT/enhancer‐binding protein β (CEBPβ), and the mitotic cyclin B. Our findings warrant further investigations to unravel the effect of long‐term dietary MSG intake on capacity of preadipocytes in different fat depots to undergo mitotic clonal expansion and hyperplasia in rodent models and human subjects, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号