首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
De novo loss-of-function mutations in methyl-CpG-binding protein 2 (MeCP2) lead to the neurodevelopmental disorder Rett syndrome (RTT). Despite promising results from strategies aimed at increasing MeCP2 levels, additional studies exploring how hypomorphic MeCP2 mutations impact the therapeutic window are needed. Here, we investigated the consequences of genetically introducing a wild-type MECP2 transgene in the Mecp2 R133C mouse model of RTT. The MECP2 transgene reversed the majority of RTT-like phenotypes exhibited by male and female Mecp2 R133C mice. However, three core symptom domains were adversely affected in female Mecp2R133C/+ animals; these phenotypes resemble those observed in disease contexts of excess MeCP2. Parallel control experiments in Mecp2Null/+ mice linked these adverse effects to the hypomorphic R133C mutation. Collectively, these data provide evidence regarding the safety and efficacy of genetically overexpressing functional MeCP2 in Mecp2 R133C mice and suggest that personalized approaches may warrant consideration for the clinical assessment of MeCP2-targeted therapies.  相似文献   

3.
Rett syndrome is a rare genetic X-linked dominant disorder. This syndrome is the most frequent cause of mental retardation in girls. In the classical form of the disease, the presenting signs and the course of development are characteristic. However clinical diagnosis can be very difficult when the expression is not in the classical form. Mutations in MeCP2 are responsible for 80% of cases. When MeCP2 mutation is found in an index case, genetic counseling is similar to that in other X-linked dominant genetic diseases. However, mutations in this gene can cause a spectrum of atypical forms. On the other hand, other genetic conditions like translocations, sex chromosome numerical anomalies, and mutations in other genes can complicate genetic counseling in this syndrome. We present the first case of molecular diagnosis of Rett syndrome in Iran and discuss the recent developments in its genetic counseling.  相似文献   

4.
5.
Rett syndrome (RTT) is an orphan progressive neurodevelopmental disease affecting almost exclusively females (frequency 1:10,000). RTT clinical expression is typically characterized by loss of purposeful hand movements, severe mental retardation and motor impairment, breathing disorders, ataxia and increased risk of sudden death. Although the main genetic cause, i.e. mutation in the methyl-CpG binding protein 2 gene (MECP2), has been already identified, the molecular and pathogenic mechanisms by which MECP2 deficiency drives pathology in RTT remains not fully understood. A wealth of evidence from our and other laboratories suggests a potential causal relationship between MECP2 dysfunction and systemic redox imbalance, a condition that has been widely found in association with RTT. In turn, a “short-circuit” of redox pathways may contribute to the systemic immune dysfunction expressed as cytokines/chemokines dysregulation, a feature clearly emerged from two recent studies on RTT patients. In this light, the purpose of this review is to describe and to stimulate a new discussion on the idea that systemic subclinical inflammation and oxidative stress are crucial players of a detrimental vicious circle, driving the pathogenesis and clinical course of RTT.  相似文献   

6.
7.
MeCP2(Methyl CpG binding protein 2)基因突变可导致Rett综合征(Rett syndrome, RTT)。目前已报道的MeCP2敲除小鼠表型与RTT病人症状存在显著差异。为探索MeCP2在脑发育中的作用及其导致RTT的机制,本研究利用CRISPR/Cas9技术构建了MeCP2基因敲除大鼠模型。通过构建靶向敲除MeCP2基因的载体,体外将Cas9 mRNA和sgRNA显微注射到SD大鼠受精卵中,在MeCP2基因exon2中造成移码突变,从而获得MeCP2基因敲除大鼠。利用测序和Western blotting方法鉴定MeCP2敲除大鼠,并对其表型和行为学特征进行分析,发现MeCP2敲除大鼠体重降低,存在焦虑倾向和认知缺陷。本研究成功构建了MeCP2基因敲除大鼠模型,其表型类似人类RTT患者的症状,为后续MeCP2功能研究提供了更好的动物模型。  相似文献   

8.
雷特综合征(Rett syndrome)属于神经发育障碍类疾病,主要由X性染色体上mecp2基因突变所致,患者多数为女孩。临床症状于出生后6~18个月逐渐显现,主要表现为头部发育缓慢,已获得的语言及手部目的性运动技能消退,智力障碍,呼吸功能障碍及自闭倾向等。多巴胺系统的功能包括运动调节、奖赏学习、情感、内分泌调控以及药物成瘾等多个方面。由于多巴胺系统在运动和精神方面与雷特综合征部分临床症状存在表面相关性,早期有学者根据临床特征提出雷特综合征患者可能存在多巴胺系统功能障碍,但两者之间是否具有实质性的内在联系以及mecp2基因是否会通过影响多巴胺系统导致相关临床症状是目前雷特综合征研究的一个热点。本文将针对雷特综合征与多巴胺系统功能障碍的相关研究进展作一综述。  相似文献   

9.
DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients.  相似文献   

10.
Abstract

Objectives

Rett syndrome (RTT) is an X-linked autism spectrum disorder caused by mutations in the MeCP2 gene in the great majority of cases. Evidence suggests a potential role of oxidative stress (OS) in its pathogenesis. Here, we investigated the potential value of OS markers (non-protein-bound iron (NPBI) and F2-isoprostanes (F2-IsoPs)) in explaining natural history, genotype-phenotype correlation, and clinical heterogeneity of RTT, and gauging the response to omega-3 polyunsaturated fatty acids (ω-3 PUFAs).

Methods

RTT patients (n = 113) and healthy controls were assayed for plasma NPBI and F2-IsoPs, and intraerythrocyte NPBI. Forty-two patients with typical RTT were randomly assigned to ω-3 PUFAs supplementation for 12 months. NPBI was measured by HPLC and F2-IsoPs using a gas chromatography/negative ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) technique.

Results

F2-IsoPs were significantly higher in the early stages as compared with the late natural progression of classic RTT. MeCP2 mutations related to more severe phenotypes exhibited higher OS marker levels than those of milder phenotypes. Higher OS markers were observed in typical RTT and early seizure variant as compared with the preserved speech and congenital variants. Significant reduction in OS markers levels and improvement of severity scores were observed after ω-3 PUFAs supplementation.

Discussion

OS is a key modulator of disease expression in RTT.  相似文献   

11.
杨文旭  潘虹 《遗传》2014,36(7):625-630
Rett综合征(Rett syndrome, RTT)是一种X连锁的神经发育障碍性遗传病, 是导致女性严重智力障碍的主要原因之一。编码甲基化CpG结合蛋白2(Methyl-CpG-binding protein 2, MeCP2)基因突变是RTT主要的遗传病理学改变, MeCP2作为转录抑制因子调控基因表达。在RTT发病机制中, 由于缺乏MeCP2与甲基化DNA的正确结合, 阻碍了它对下游靶基因表达的正常调控, 最终导致脑功能障碍。目前, 对MeCP2在脑发育过程中的作用以及如何导致RTT的发生, 其机制尚不清楚。文章从MECP2基因和MeCP2蛋白两个方面, 对基因结构、蛋白质功能以及在分子水平上的调控机制进行了综述, 以期为RTT的发病机制研究提供新思路。  相似文献   

12.
Rett syndrome (RTT) is a progressive neurodevelop-mental disorder,mainly caused by mutations in MeCP2 and currently with no cure.We report here that neurons from R106W MeCP2 RTT human iPSCs as well as human embryonic stem cells after MeCP2 knockdown exhibit consistent and long-lasting impairment in maturation as indicated by impaired action potentials and passive membrane properties as well as reduced soma size and spine density.Moreover,RTT-inherent defects in neu-ronal maturation could be pan-neuronal and occurred in neurons with both dorsal and ventral forebrain features.Knockdown of MeCP2 led to more severe neuronal deficits as compared to RTT iPSC-derived neurons,which appeared to retain partial function.Strikingly,consistent deficits in nuclear size,dendritic complexity and circuitry-dependent spontaneous postsynaptic currents could only be observed in MeCP2 knockdown neurons but not RTT iPSC-derived neurons.Both neu-ron-intrinsic and circuitry-dependent deficits of MeCP2-deficient neurons could be fully or partially rescued by re-expression of wild type or T158M MeCP2,strengthening the dosage dependency of MeCP2 on disease phenotypes and also the partial function of the mutant.Our findings thus reveal stable neuronal matu-ration deficits and unexpectedly,graded sensitivities of neuron-inherent and neural transmission phenotypes towards the extent of MeCP2 deficiency,which is infor-mative for future therapeutic development.  相似文献   

13.
One goal of research using induced pluripotent stem cell (iPSC) is to generate patient-specific cells which can be used to obtain multiple types of differentiated cells as disease models. Minimally or non-integrating methods to deliver the reprogramming genes are considered to be the best but they may be inefficient. Lentiviral delivery is currently among the most efficient methods but it integrates transgenes into the genome, which may affect the behavior of the iPSC if integration occurs into an important locus. Here we designed a polycistronic lentiviral construct containing four pluripotency genes with an EGFP selection marker. The cassette was excisable with the Cre-loxP system making possible the removal of the integrated transgenes from the genome. Mouse embryonic fibroblasts were reprogrammed using this viral system, rapidly resulting in large number of iPSC colonies. Based on the lowest EGFP expression level, one parental line was chosen for excision. Introduction of the Cre recombinase resulted in transgene-free iPSC subclones. The effect of the transgenes was assessed by comparing the parental iPSC with two of its transgene-free subclones. Both excised and non-excised iPSCs expressed standard pluripotency markers. The subclones obtained after Cre recombination were capable of differentiation in vitro, in contrast to the parental, non-excised cells and formed germ-line competent chimeras in vivo.  相似文献   

14.
Marchetto MC  Carromeu C  Acab A  Yu D  Yeo GW  Mu Y  Chen G  Gage FH  Muotri AR 《Cell》2010,143(4):527-539
Autism spectrum disorders (ASD) are complex neurodevelopmental diseases in which different combinations of genetic mutations may contribute to the phenotype. Using Rett syndrome (RTT) as an ASD genetic model, we developed a culture system using induced pluripotent stem cells (iPSCs) from RTT patients' fibroblasts. RTT patients' iPSCs are able to undergo X-inactivation and generate functional neurons. Neurons derived from RTT-iPSCs had fewer synapses, reduced spine density, smaller soma size, altered calcium signaling and electrophysiological defects when compared to controls. Our data uncovered early alterations in developing human RTT neurons. Finally, we used RTT neurons to test the effects of drugs in rescuing synaptic defects. Our data provide evidence of an unexplored developmental window, before disease onset, in RTT syndrome where potential therapies could be successfully employed. Our model recapitulates early stages of a human neurodevelopmental disease and represents a promising cellular tool for drug screening, diagnosis and personalized treatment.  相似文献   

15.
16.
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.  相似文献   

17.
Induced pluripotent stem cells (iPSCs) were first generated from mouse embryonic fibroblasts in the year 2006. These cells resemble the typical morphology of embryonic stem cells, express pluripotency markers, and are able to transmit through germlines. To date, iPSCs of many species have been generated, whereas generation of bat iPSCs (biPSCs) has not been reported. To facilitate in-depth study of bats at the molecular and cellular levels, we describe the successful derivation of biPSCs with a piggyBac (PB) vector that contains eight reprogramming factors Oct4, Sox2, Klf4, Nanog, cMyc, Lin28, Nr5a2, and miR302/367. These biPSCs were cultured in media containing leukemia inhibitory factor and three small molecule inhibitors (CHIR99021, PD0325901, and A8301). They retained normal karyotype, displayed alkaline phosphatase activity, and expressed pluripotency markers Oct4, Sox2, Nanog, TBX3, and TRA-1-60. They could differentiate in vitro to form embryoid bodies and in vivo to form teratomas that contained tissue cells of all three germ layers. Generation of biPSCs will facilitate future studies on the mechanisms of antiviral immunity and longevity of bats at the cellular level.  相似文献   

18.
19.
Rett Syndrome is an X-linked progressive neurological disorder caused by inactivation of one allele of the MECP2 gene. There are no curative treatments, and activation of wild-type MECP2 expression is one strategy for stabilizing or reversing the disease. We isolated fibroblast clones that express exclusively either the wild-type or a 32-bp-deletion mutant form of MECP2. We developed a sensitive assay for measuring wild-type MECP2 mRNA levels and tested small molecule epigenetic activators for their ability to activate gene expression. Although our pilot screen did not identify activators of MECP2 expression, it established the value of using clonal cells and defined challenges that must be overcome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号