首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
Abstract Why do parasites harm their hosts? The general understanding is that if the transmission rate and virulence of a parasite are linked, then the parasite must harm its host to maximize its transmission. The exact nature of such trade‐offs remains largely unclear, but for vertebrate hosts it probably involves interactions between a microparasite and the host immune system. Previous results have suggested that in a homogeneous host population in the absence of super‐ or coinfection, within‐host dynamics lead to selection of the parasite with an intermediate growth rate that is just being controlled by the immune system before it kills the host (Antia et al. 1994). In this paper, we examine how this result changes when heterogeneity is introduced to the host population. We incorporate the simplest form of heterogeneity–random heterogeneity in the parameters describing the size of the initial parasite inoculum, the immune response of the host, and the lethal density at which the parasite kills the host. We find that the general conclusion of the previous model holds: parasites evolve some intermediate growth rate. However, in contrast with the generally accepted view, we find that virulence (measured by the case mortality or the rate of parasite‐induced host mortality) increases with heterogeneity. Finally, we link the within‐host and between‐host dynamics of parasites. We show how the parameters for epidemiological spread of the disease can be estimated from the within‐host dynamics, and in doing so examine the way in which trade‐offs between these epidemiological parameters arise as a consequence of the interaction of the parasite and the immune response of the host.  相似文献   

2.
Opportunities for genetic exchange are abundant between bacteria and foreign genetic elements (FGEs) such as conjugative plasmids, transposable elements and bacteriophages. The genetic novelty that may arise from these forms of genetic exchange is potentially beneficial to bacterial hosts, but there are also potential costs, which may be considerable in the case of phage infection. Some bacterial resistance mechanisms target both beneficial and deleterious forms of genetic exchange. Using a general epidemiological model, we explored under which conditions such resistance mechanisms may evolve. We considered a population of hosts that may be infected by FGEs that either confer a benefit or are deleterious to host fitness, and we analysed the epidemiological and evolutionary outcomes of resistance evolving under different cost/benefit scenarios. We show that the degree of co‐infection between these two types of infection is particularly important in determining the evolutionarily stable level of host resistance. We explore these results using the example of CRISPR‐Cas, a form of bacterial immunity that targets a variety of FGEs, and we show the potential role of bacteriophage infection in selecting for resistance mechanisms that in turn limit the acquisition of plasmid‐borne antibiotic resistance. Finally, beyond microbes, we discuss how endosymbiotic associations may have shaped the evolution of host immune responses to pathogens.  相似文献   

3.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

4.
We examine the evolutionary dynamics of resistance to parasites through acquired immunity. Resistance can be achieved through the innate mechanisms of avoidance of infection and reduced pathogenicity once infected, through recovery from infection and through remaining immune to infection: acquired immunity. We assume that each of these mechanisms is costly to the host and find that the evolutionary dynamics of innate immunity in hosts that also have acquired immunity are quantitatively the same as in hosts that possess only innate immunity. However, compared with resistance through avoidance or recovery, there is less likely to be polymorphism in the length of acquired immunity within populations. Long-lived organisms that can recover at intermediate rates faced with fast-transmitting pathogens that cause intermediate pathogenicity (mortality of infected individuals) are most likely to evolve long-lived acquired immunity. Our work emphasizes that because whether or not acquired immunity is beneficial depends on the characteristics of the disease, organisms may be selected to only develop acquired immunity to some of the diseases that they encounter.  相似文献   

5.
Parasites impose a permanent threat for hosts. As a consequence, immune defenses are important for host fitness. However, the immune response can also produce self‐damage and impair host fitness if not properly regulated. Effectors that up‐ and downregulate the immune response should, therefore, evolve in concert, and be under the action of correlational selection. To address this issue, we assessed the shape of the selection operating on pro‐ and anti‐inflammatory effectors following an inflammatory challenge in laboratory mice. We found that selection acts on the combination of these two traits as individuals that produced large amount of pro‐inflammatory cytokines could achieve relatively high fitness (survival) only if also producing a large amount of anti‐inflammatory effectors. To our knowledge, this is the first study providing evidence for correlational selection on immunity.  相似文献   

6.
Parasites are one of the strongest selective agents in nature. They select for hosts that evolve counter‐adaptive strategies to cope with infection. Helminth parasites are special because they can modulate their hosts’ immune responses. This phenomenon is important in epidemiological contexts, where coinfections may be affected. How different types of hosts and helminths interact with each other is insufficiently investigated. We used the three‐spined stickleback (Gasterosteus aculeatus) – Schistocephalus solidus model to study mechanisms and temporal components of helminth immune modulation. Sticklebacks from two contrasting populations with either high resistance (HR) or low resistance (LR) against S. solidus, were individually exposed to S. solidus strains with characteristically high growth (HG) or low growth (LG) in G. aculeatus. We determined the susceptibility to another parasite, the eye fluke Diplostomum pseudospathaceum, and the expression of 23 key immune genes at three time points after S. solidus infection. D. pseudospathaceum infection rates and the gene expression responses depended on host and S. solidus type and changed over time. Whereas the effect of S. solidus type was not significant after three weeks, T regulatory responses and complement components were upregulated at later time points if hosts were infected with HG S. solidus. HR hosts showed a well orchestrated immune response, which was absent in LR hosts. Our results emphasize the role of regulatory T cells and the timing of specific immune responses during helminth infections. This study elucidates the importance to consider different coevolutionary trajectories and ecologies when studying host‐parasite interactions.  相似文献   

7.
We examine in detail how epidemiological feedbacks combine with costs and benefits to determine the evolution of resistance by systematically analysing continuously stable strategies (CSS) for different host–parasite frameworks. The mode of resistance (innate versus acquired), the nature of the host (i.e. life‐history and immunological memory) and the nature of the disease (effects on fertility or mortality) all impact on the feedbacks that are critical to the evolution of resistance. By identifying relationships between CSS investment and the underlying epidemiological feedback for each mode of resistance in each framework, we distil complex feedbacks into simple combinations of selection pressures. When the parasite does not affect fertility, CSS investment reflects only the benefit of resistance and we explain why this is markedly different for innate and acquired resistance. If infection has no effect on host fertility, CSS investment in acquired immunity increases with the square of disease prevalence. While in contrast for evolving innate resistance, CSS investment is greatest at intermediate prevalence. When disease impacts fertility, only a fraction of the host population reproduce, and this introduces new ecological feedbacks to both the cost of resistance and the damage from infection. The multiple feedbacks in this case lead to the alternative result that the higher the abundance of infecteds, the higher the investment in innate resistance. A key insight is that maximal investment occurs at intermediate lifespans in a range of different host–parasite interactions, but for disparate reasons which can only be understood by a detailed analysis of the feedbacks. We discuss the extension of our approach to structured host populations and parasite community dynamics.  相似文献   

8.
Wolbachia are bacterial endosymbionts that manipulate the reproduction of their arthropod hosts. Although theory suggests that infections are frequently lost within host species due to the evolution of resistance, Wolbachia infect a huge number of species worldwide. This apparent paradox suggests that horizontal transmission between host species has been a key factor in shaping the global Wolbachia pandemic. Because Wolbachia infections are thus acquired and lost like any other infection, we use a standard epidemiological model to analyse Wolbachia horizontal transmission dynamics over evolutionary time. Conceptually modifying the model, we apply it not to transmission between individuals but between species. Because, on evolutionary timescales, infections spread frequently between closely related species and occasionally over large phylogenetic distances, we represent the set of host species as a small‐world network that satisfies both requirements. Our model reproduces the effect of basic epidemiological parameters, which demonstrates the validity of our approach. We find that the ratio between transmission rate and recovery rate is crucial for determining the proportion of infected species (incidence) and that, in a given host network, the incidence may still be increasing over evolutionary time. Our results also point to the importance of occasional transmission over long phylogenetic distances for the observed high incidence levels of Wolbachia. In conclusion, we are able to explain why Wolbachia are so abundant among arthropods, although selection for resistance within hosts often leads to infection loss. Furthermore, our unorthodox approach of using epidemiology in evolutionary time can be applied to all symbionts that use horizontal transmission to infect new hosts.  相似文献   

9.
There is increasing experimental evidence that exposure to low doses of infection may ‘prime’ the immune response of invertebrate hosts, giving them greater protection against future infection. This form of immune memory is not compatible with the ‘acquired immunity’ modelled by the classic Susceptible-Infected-Recovered (SIR) epidemiological model, but instead requires the development of an alternative Susceptible-Primed-Infected (SPI) framework. Some initial theoretical work has explored the epidemiological and evolutionary dynamics of the SPI model, but these have assumed hosts exist in a constant environment. In reality, natural invertebrate-disease systems will be subject to significant environmental variation. Here, I use bifurcation analysis using numerical continuation software, complemented with numerical simulations, to investigate the effects of seasonal forcing on the already complex epidemiological dynamics of the SPI model. I show that multi-year cycles, quasi-periodicity, chaos, and multiple stability may all result, and highlight the importance not just of the forcing amplitude, but also the ecological and epidemiological background, for complex dynamics to emerge.  相似文献   

10.
Recent theoretical work has shown that long‐lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter‐lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long‐lived organisms than in short‐lived organisms. However, the opposite may be true for the evolution of disease‐resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency‐dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short‐lived hosts. Moreover, resistance in long‐lived hosts could only be polymorphic for more costly and more extreme resistance levels than short‐lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer‐lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality‐inducing diseases, or to density‐dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life‐history traits of the host.  相似文献   

11.
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system is a recently discovered type of adaptive immune defense in bacteria and archaea that functions via directed incorporation of viral and plasmid DNA into host genomes. Here, we introduce a multiscale model of dynamic coevolution between hosts and viruses in an ecological context that incorporates CRISPR immunity principles. We analyze the model to test whether and how CRISPR immunity induces host and viral diversification and the maintenance of many coexisting strains. We show that hosts and viruses coevolve to form highly diverse communities. We observe the punctuated replacement of existent strains, such that populations have very low similarity compared over the long term. However, in the short term, we observe evolutionary dynamics consistent with both incomplete selective sweeps of novel strains (as single strains and coalitions) and the recurrence of previously rare strains. Coalitions of multiple dominant host strains are predicted to arise because host strains can have nearly identical immune phenotypes mediated by CRISPR defense albeit with different genotypes. We close by discussing how our explicit eco-evolutionary model of CRISPR immunity can help guide efforts to understand the drivers of diversity seen in microbial communities where CRISPR systems are active.  相似文献   

12.
Maternal transfer of strain-specific immunity in an invertebrate   总被引:10,自引:0,他引:10  
The most celebrated component of the vertebrate immune system is the acquired response in which memory cells established during primary infection enhance the proliferation of antibodies during secondary infection. Additionally, the strength of vertebrate acquired immune responses varies dramatically depending on the infecting pathogen species or on the pathogen genotype within species. Because invertebrates lack the T-cell receptors and Major Histocompatibility Complex (MHC) molecules that mediate vertebrate adaptive immune responses, they are thought to lack adaptive immunity and be relatively unspecific in their interactions with pathogens. With only innate immunity, invertebrate hosts are believed to be nai;ve at each new encounter with pathogens. Nevertheless, some forms of facultative immunity appear to be important in insects; some individuals have enhanced immunity due to population density, and some social insects benefit when their nest-mates have been exposed to a pathogen or pathogen mimic (; see for a predation example.) Here we provide evidence for acquired strain-specific immunity in the crustacean Daphnia magna infected with the pathogenic bacteria Pasteuria ramosa. Specifically, the fitness of hosts was enhanced when challenged with a bacterial strain their mother had experienced relative to cases when mother and offspring were challenged with different strains.  相似文献   

13.
Abstract.— Virulence is an evolutionary paradox because parasites never benefit from their host's death. The adaptive explanation of virulence is classically based upon the existence of physiological constraints that create a trade-off between parasites' epidemiological traits (virulence, transmissibility, and clearance). Here we develop an epidemiological model where infections are dynamic processes and we demonstrate how these dynamics generate a trade-off between emerging epidemiological parameters. We then study how host's immune strength modifies this trade-off and hence influences virulence evolution. We found that in acute infections, where parasites are engaged in a race with immune cells, immunity restrains more the duration of the infection than its intensity. As a consequence parasites evolve to provoke more virulent but shorter infections in strongly immunized hosts.  相似文献   

14.
If a female survives an infection, she can transfer antibodies against that particular pathogen to any future offspring she produces. The resulting protection of offspring for a period after their birth is termed maternal immunity. Because infection in newborns is associated with high mortality, the duration of this protection is expected to be under strong selection. Evolutionary modelling structured around a trade‐off between fertility and duration of maternal immunity has indicated selection for longer duration of maternal immunity for hosts with longer lifespans. Here, we use a new modelling framework to extend this analysis to consider characteristics of pathogens (and hosts) in further detail. Importantly, given the challenges in characterizing trade‐offs linked to immune function empirically, our model makes no assumptions about costs of longer lasting maternal immunity. Rather, a key component of this analysis is variation in mortality over age. We found that the optimal duration of maternal immunity is shaped by the shifting balance of the burden of infection between young and old individuals. As age of infection depends on characteristics of both the host and the pathogen, both affect the evolution of duration of maternal immunity. Our analysis provides additional support for selection for longer duration of maternal immunity in long‐lived hosts, even in the absence of explicit costs linked to duration of maternal immunity. Further, the scope of our results provides explanations for exceptions to the general correlation between duration of maternal immunity and lifespan, as we found that both pathogen characteristics and trans‐generational effects can lead to important shifts in fitness linked to maternal immunity. Finally, our analysis points to new directions for quantifying the trade‐offs that drive the development of the immune system.  相似文献   

15.
Traditional explorations of infectious disease evolution have considered the competition between two cross-reactive strains within the standard framework of disease models. Such techniques predict that diseases should evolve to be highly transmissible, benign to the host and possess a long infectious period: in general, diseases do not conform to this ideal. Here we consider a more holistic approach, suggesting that evolution is a trade-off between adaptive pressures at different scales: within host, between hosts and at the population level. We present a model combining within-host pathogen dynamics and transmission between individuals governed by an explicit contact network, where transmission dynamics between hosts are a function of the interaction between the pathogen and the hosts' immune system, though ultimately constrained by the contacts each infected host possesses. Our results show how each of the scales places constraints on the evolutionary behavior, and that complex dynamics may emerge due to the feedbacks between epidemiological and evolutionary dynamics. In particular, multiple stable states can occur with switching between them stochastically driven.  相似文献   

16.
Tuberculosis (TB) is an infectious disease with a peculiar feature: Upon infection with the causative agent, Mycobacterium Tuberculosis (MTB), most hosts enter a latent state during which no transmission of MTB to new hosts occurs. Only a fraction of latently infected hosts develop TB disease and can potentially infect new hosts. At first glance, this seems like a waste of transmission potential and therefore an evolutionary suboptimal strategy for MTB. It might be that the human immune response keeps MTB in check in most hosts, thereby preventing it from achieving its evolutionary optimum. Another possible explanation is that long latency and progression to disease in only a fraction of hosts are evolutionary beneficial to MTB by allowing it to persist better in small host populations. Given that MTB has co-evolved with human hosts for millenia or longer, it likely encountered small host populations for a large share of its evolutionary history and had to evolve strategies of persistence. Here, we use a mathematical model to show that indeed, MTB persistence is optimal for an intermediate duration of latency and level of activation. The predicted optimal level of activation is above the observed value, suggesting that human co-evolution has lead to host immunity, which keeps MTB below its evolutionary optimum.  相似文献   

17.
There is a wide variety of resistance mechanisms that hosts may evolve in response to their parasites. These can be functionally classified as avoidance (lower probability of becoming infected), recovery (faster rate of clearance), tolerance (reduced death rate when infected), or acquired immunity. It is commonly thought that longer lived organisms should invest more in costly resistance. We show that due to epidemiological feedbacks the situation is often more complex. Using evolutionary theory we examine how the optimal investment in costly resistance varies with life span in a broad range of scenarios. In the absence of acquired immunity, longer lived populations do generally invest more in resistance. If hosts have acquired immunity, the optimal resistance may either increase or decrease with increasing life span. In addition, there may be evolutionary bistability with high and low investments in avoidance or tolerance. The optimal investment in the duration of acquired immunity always increases with life span, and due to bistability, shorter lived hosts may commonly not evolve any immunity. In contrast, the optimal investment in the probability of acquiring immunity initially increases and then decreases with life span. Our results have important implications for the evolution of invertebrate and vertebrate immunity, and for the evolution of acquired immunity itself.  相似文献   

18.
Hosts are typically challenged by multiple parasites, but to date theory on the evolution of resistance has mainly focused on single infections. We develop a series of models that examine the impact of multiple parasites on the evolution of resistance under the assumption that parasites coexist at the host population scale as a consequence of superinfection. In this way, we are able to explicitly examine the impact of ecological dynamics on the evolutionary outcome. We use our models to address a key question of how host lifespan affects investment in resistance to multiple parasites. We show that investment in costly resistance depends on the specificity of the immune response and on whether or not the focal parasite leads to more acute infection than the co‐circulating parasite. A key finding is that investment in resistance always increases as the immune response becomes more general independently of whether it is the focal or the co‐circulating parasite that exploits the host most aggressively. Long‐lived hosts always invest more than short‐lived hosts in both general resistance and resistance that is specific to relatively acute focal parasites. However, for specific resistance to parasites that are less acute than co‐circulating parasites it is the short‐lived hosts that are predicted to invest most. We show that these results apply whatever the mode of defence, that is whether it is through avoidance or through increased recovery, with or without acquired immunity, or through acquired immunity itself. As a whole, our results emphasize the importance of considering multiple parasites in determining optimal immune investment in eco‐evolutionary systems.  相似文献   

19.
We describe a model of host-parasite coevolution, where the interaction depends on the investments by the host in its immune response and by the parasite in its ability to suppress (or evade) its host's immune response. We base our model on the interaction between malaria parasites and their mosquito hosts and thus describe the epidemiological dynamics with the Macdonald-Ross equation of malaria epidemiology. The qualitative predictions of the model are most sensitive to the cost of the immune response and to the intensity of transmission. If transmission is weak or the cost of immunity is low, the system evolves to a coevolutionarily stable equilibrium at intermediate levels of investment (and, generally, at a low frequency of resistance). At a higher cost of immunity and as transmission intensifies, the system is not evolutionarily stable but rather cycles around intermediate levels of investment. At more intense transmission, neither host nor parasite invests any resources in dominating its partner so that no resistance is observed in the population. These results may help to explain the lack of encapsulated malaria parasites generally observed in natural populations of mosquito vectors, despite strong selection pressure for resistance in areas of very intense transmission.  相似文献   

20.
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum‐likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host‐associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall‐forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host‐plant‐associated differentiation were greater in the non‐gall‐inducing parasites than in their gall‐inducing hosts. RNA‐seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host‐plant relationships. Our results suggest a mode of speciation in which host plants drive within‐guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号