首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)‐induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein‐HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound‐healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT‐qPCR and Western blot, respectively. The release of cytokines interleukin‐6 and tumour necrosis factor‐α was measured by ELISA. HSPA12B suppressed LPS‐induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS‐induced up‐regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS‐induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS‐induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway.  相似文献   

2.
3.
Wnt pathway deregulation is a common characteristic of many cancers. Only colorectal cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of the pancreas) have activating mutations in β‐catenin (CTNNB1). We have compared the dynamics and the potency of β‐catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β‐catenin took much longer to achieve Wnt deregulation and acquire a crypt‐progenitor cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β‐catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β‐catenin mutation to differentially transform the SI versus the colon correlated with higher expression of E‐cadherin and a higher number of E‐cadherin:β‐catenin complexes at the membrane. Reduction in E‐cadherin synergised with an activating mutation of β‐catenin resulting in a rapid CPC phenotype within the SI and colon. Thus, there is a threshold of β‐catenin that is required to drive transformation, and E‐cadherin can act as a buffer to sequester mutated β‐catenin.  相似文献   

4.
5.
Extracellular β‐NAD is known to elevate intracellular levels of calcium ions, inositol 1,4,5‐trisphate and cAMP. Recently, β‐NAD was identified as an agonist for P2Y1 and P2Y11 purinergic receptors. Since β‐NAD can be released extracellularly from endothelial cells (EC), we have proposed its involvement in the regulation of EC permeability. Here we show, for the first time, that endothelial integrity can be enhanced in EC endogenously expressing β‐NAD‐activated purinergic receptors upon β‐NAD stimulation. Our data demonstrate that extracellular β‐NAD increases the transendothelial electrical resistance (TER) of human pulmonary artery EC (HPAEC) monolayers in a concentration‐dependent manner indicating endothelial barrier enhancement. Importantly, β‐NAD significantly attenuated thrombin‐induced EC permeability as well as the barrier‐compromising effects of Gram‐negative and Gram‐positive bacterial toxins representing the barrier‐protective function of β‐NAD. Immunofluorescence microscopy reveals more pronounced staining of cell–cell junctional protein VE‐cadherin at the cellular periphery signifying increased tightness of the cell‐cell contacts after β‐NAD stimulation. Interestingly, inhibitory analysis (pharmacological antagonists and receptor sequence specific siRNAs) indicates the participation of both P2Y1 and P2Y11 receptors in β‐NAD‐induced TER increase. β‐NAD‐treatment attenuates the lipopolysaccharide (LPS)‐induced phosphorylation of myosin light chain (MLC) indicating its involvement in barrier protection. Our studies also show the involvement of cAMP‐dependent protein kinase A and EPAC1 pathways as well as small GTPase Rac1 in β‐NAD‐induced EC barrier enhancement. With these results, we conclude that β‐NAD regulates the pulmonary EC barrier integrity via small GTPase Rac1‐ and MLCP‐ dependent signaling pathways. J. Cell. Physiol. 223: 215–223, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
The cadherin/catenin complex plays a key role in the initiation of cell‐cell recognition, and adhesion, and the elaboration of structural and functional organization in multicellular tissues and organs. It is associated with tumor metastasis and also acts as an “invasion suppressor” of cancer cells. Nasopharyngeal carcinoma (NPC) is notorious for its highly metastatic nature. The expression of the E‐cadherin/catenin complex is down‐regulated in NPC tumor specimens. To obtain better insight into the intercellular adhesive property of NPC cells, we used immunofluorescence microscopy, immunoprecipitation, and immunoblot analysis to examine the expression of the classical cadherins and β‐catenin in a NPC cell line, TW‐039. The results demonstrate a change in the distribution of E‐cadherin from cytosolic flakes to cell‐cell contacts with increasing time in culture. Between days 1 and 5 after plating, the detergent‐insoluble fraction of E‐cadherin increased from 20% to 37% of total E‐cadherin, and that for P‐cadherin increased from 33% to 40%. By contrast, the values for β‐catenin remained unchanged (26% and 25%). Both immunofluorescence and immunoblot studies suggested that P‐cadherin may be involved in pioneer contact adhesion of TW‐039 cells. Interestingly, E‐, P‐, and N‐cadherin are co‐expressed in this cell line. Immunoprecipitation studies also showed that other members of the cadherin family may be involved in the contact adhesion of TW‐039 cells. J. Cell. Biochem. 76:161–172, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Endometriosis is a common, chronic gynaecologic disease affecting up to 10% of women in their reproductive age and leading to pain and infertility. Oestrogen (E2)‐induced epithelial‐mesenchymal transition (EMT) process has been considered as a key factor of endometriosis development. Recently, the dysregulated circular RNAs (circRNAs) have been discovered in endometriosis tissues. However, the molecular mechanism of circRNAs on the E2‐induced EMT process in endometriosis is still unknown. Here, we demonstrated that circ_0004712 up‐regulated by E2 treatment in endometrial epithelial cells. Knock‐down the expression of circ_0004712 significantly suppressed E2‐induced cell migration activity. Meanwhile, we identified miR‐148a‐3p as a potential target miRNA of circ_0004712. Inhibited the expression of miR‐148a‐3p could recovered the effect of circ_0004712 knock‐down in E2‐treated endometrial epithelial. Furthermore, Western blot assay showed that E2 treatment could increase the expression and activity of β‐catenin, snail and N‐cadherin and reduce the expression of E‐cadherin. The expression and activity of β‐catenin pathway were recovered by circ_0004712 knock‐down or miR‐148a‐3p overexpression. Altogether, the results demonstrate that circ_0004712/miR‐148a‐3p plays an important role in E2‐induced EMT process in the development of endometriosis, and the molecular mechanism may be associated with the β‐catenin pathway. This work highlighted the importance of circRNAs in the development of endometriosis and provide a new biomarker for diagnosis and therapies.  相似文献   

9.
10.
The transcellular entry of Escherichia coli K1 through human brain microvascular endothelial cells (HBMEC) is responsible for tight junction disruption, leading to brain oedema in neonatal meningitis. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with its receptor, Ecgp96, to induce PKC‐α phosphorylation, adherens junction (AJ) disassembly (by dislodging β‐catenin from VE‐cadherin), and remodelling of actin in HBMEC. We report here that IQGAP1 mediates β‐catenin dissociation from AJs to promote actin polymerization required for E. coli K1 invasion of HBMEC. Overexpression of C‐terminal truncated IQGAP1 (IQΔC) that cannot bind β‐catenin prevents both AJ disruption and E. coli K1 entry. Of note, phospho‐PKC‐α interacts with the C‐terminal portion of Ecgp96 as well as with VE‐cadherin after IQGAP1‐mediated AJ disassembly. HBMEC overexpressing either C‐terminal truncated Ecgp96 (Ecgp96Δ200) or IQΔC upon infection with E. coli showed no interaction ofphospho‐PKC‐α with Ecgp96. These data indicate that the binding of OmpA to Ecgp96 induces PKC‐α phosphorylation and association of phospho‐PKC‐α with Ecgp96, and then signals IQGAP1 to detach β‐catenin from AJs. Subsequently, IQGAP1/β‐catenin bound actin translocates to the site of E. coli K1 attachment to promote invasion.  相似文献   

11.
Emerging evidence has shown that GSK3β plays a pivotal role in regulating the specification of axons and dendrites. Our previous study has shown a novel GSK3β interaction protein (GSKIP) able to negatively regulate GSK3β in Wnt signaling pathway. To further characterize how GSKIP functions in neurons, human neuroblastoma SH‐SY5Y cells treated with retinoic acid (RA) to differentiate to neuron‐like cells was used as a model. Overexpression of GSKIP prevents neurite outgrowth in SH‐SY5Y cells. GSKIP may affect GSK3β activity on neurite outgrowth by inhibiting the specific phosphorylation of tau (ser396). GSKIP also increases β‐catenin in the nucleus and raises the level of cyclin D1 to promote cell‐cycle progression in SH‐SY5Y cells. Additionally, overexpression of GSKIP downregulates N‐cadherin expression, resulting in decreased recruitment of β‐catenin. Moreover, depletion of β‐catenin by small interfering RNA, neurite outgrowth is blocked in SH‐SY5Y cells. Altogether, we propose a model to show that GSKIP regulates the functional interplay of the GSK3β/β‐catenin, β‐catenin/cyclin D1, and β‐catenin/N‐cadherin pool during RA signaling in SH‐SY5Y cells. J. Cell. Biochem. 108: 1325–1336, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N‐cadherin, a calcium‐dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N‐cadherin internalizes through clathrin‐mediated endocytosis (CME). Two tyrosine‐based motifs in the cytoplasmic domain of N‐cadherin recognized by the μ2 subunit of the AP‐2 adaptor complex are responsible for CME of N‐cadherin. Moreover, β‐catenin, a core component of the N‐cadherin adhesion complex, inhibits N‐cadherin endocytosis by masking the 2 tyrosine‐based motifs. Removal of β‐catenin facilitates μ2 binding to N‐cadherin, thereby increasing clathrin‐mediated N‐cadherin endocytosis and neurite outgrowth without affecting the steady‐state level of surface N‐cadherin. These results identify and characterize the mechanism controlling N‐cadherin endocytosis through β‐catenin‐regulated μ2 binding to modulate neurite outgrowth.   相似文献   

14.
15.
Synaptic adhesion molecules, which coordinately control structural and functional changes at both sides of synapses, are important for synaptogenesis and synaptic plasticity. Because they physically form homophilic or heterophilic adhesions across synaptic junctions, these molecules can initiate transsynaptic communication in both anterograde and retrograde directions. Using optical imaging approaches, we investigated whether an increase in postsynaptic N‐cadherin could correspondingly alter the function of connected presynaptic terminals. Postsynaptic expression of β‐catenin Y654F, a phosphorylation‐defective form with enhanced binding to N‐cadherin, is sufficient to increase postsynaptic surface levels of N‐cadherin and consequently promote presynaptic reorganizations. Such reorganizations include increases in the densities of the synaptic vesicle protein, Synaptotagmin 1 and the active zone scaffold protein, Bassoon, the number of active boutons and the size of the total recycling vesicle pool. In contrast, synaptic vesicle turnover is significantly impaired, preventing the exchange of synaptic vesicles with adjacent boutons. Together, N‐cadherin‐mediated retrograde signaling, governed by phosphoregulation of postsynaptic β‐catenin Y654, coordinately modulates presynaptic vesicle dynamics to enhance synaptic communication in mature neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 61–74, 2017  相似文献   

16.
N‐cadherin is a member of the Ca2+‐dependent cell adhesion molecules and plays an important role in the assembly of the adherens junction in chicken cardiomyocytes. In addition to being present at the cell‐cell junction, N‐cadherin is associated with costameres in extrajunctional regions. The significance of the N‐cadherin‐associated costameres and whether catenins are components of costameres in chicken cardiomyocytes are not known. In this study, double‐labeling immunofluorescence microscopy was used to determine the extrajunctional distribution of both N‐cadherin and its cytoplasmic associated proteins, α‐ and β‐catenins, and their relationship to myofibrillar Z‐disc α‐actinin. N‐cadherin, α‐, and β‐catenins were all found to be present at the extrajunctional region and, in some cases, were codistributed with myofibrillar α‐actinin exhibiting a periodic staining pattern. Confocal microscopy confirmed that both N‐cadherin and β‐catenin colocalized with peripheral myofibrillar α‐actinin on the dorsal surface of cardiomyocytes as components of the costameres. Intracellular application of antibodies specific for the cytoplasmic portions of N‐cadherin, α‐, and β‐catenin, either by electroporation or microinjection, resulted in myofibril disorganization and disassembly. These results suggest the existence of N‐cadherin/catenin‐based costameres in the dorsal surface of cultured chicken cardiomyocytes in addition to the integrin/vinculin‐based costameres found in the ventral surface and indicate that the former set of costameres is essential for cardiac myofibrillogenesis. J. Cell. Biochem. 75:93–104, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Correlation between periodontitis and atherosclerosis is well established, and the inherent mechanisms responsible for this relationship remain unclear. The biological function of growth arrest‐specific 6 (gas6) has been discovered in both atherosclerosis and inflammation. Inhibitory effects of gas6 on the expression of inflammatory factors in human umbilical vein endothelial cells (HUVECs) stimulated by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis‐LPS) were reported in our previous research. Herein, the effects of gas6 on monocytes‐endothelial cells interactions in vitro and their probable mechanisms were further investigated. Gas6 protein in HUVECs was knocked down with siRNA or overexpressed with plasmids. Transwell inserts and co‐culturing system were introduced to observe chemotaxis and adhering affinity between monocytes and endothelial cells in vitro. Expression of gas6 was decreased in inflammatory periodontal tissues and HUVECs challenged with P. gingivalis‐LPS. The inhibitory effect of gas6 on chemotaxis and adhesion affinity between monocytes and endothelial cells was observed, and gas6 promoted Akt phosphorylation and inhibited NF‐κB phosphorylation. To our best knowledge, we are first to report that gas6 inhibit monocytes‐endothelial cells interactions in vitro induced by P. gingivalis‐LPS via Akt/NF‐κB pathway. Additionally, inflammation‐mediated inhibition of gas6 expression is through LncRNA GAS6‐AS2, rather than GAS6‐AS1, which is also newly reported.  相似文献   

18.
19.
20.
Epithelial cadherin (E‐cadherin) is a 120 kDa cell–cell adhesion molecule involved in the establishment of epithelial adherens junctions. It is connected to the actin cytoskeleton by adaptor proteins such as β‐catenin. Loss of E‐cadherin expression/function has been related to tumor progression and metastasis. Several molecules associated with down‐regulation of E‐cadherin have been described, within them neural cadherin, Twist and dysadherin. Human breast cancer cell lines IBH‐6 and IBH‐4 were developed from ductal primary tumors and show characteristic features of malignant epithelial cells. In this study expression of E‐cadherin and related proteins in IBH‐6 and IBH‐4 cell lines was evaluated. In IBH‐6 and IBH‐4 cell extracts, only an 89 kDa E‐cadherin form (Ecad89) was detected, which is truncated at the C‐terminus and is present at low levels. Moreover, no accumulation of the 86 kDa E‐cadherin ectodomain and of the 38 kDa CTF1 fragment was observed. IBH‐6 and IBH‐4 cells showed an intracellular scattered E‐cadherin localization. β‐catenin accompanied E‐cadherin localization, and actin stress fibers were identified in both cell types. E‐cadherin mRNA levels were remarkably low in IBH‐6 and IBH‐4 cells. The E‐cadherin mRNA and genomic sequence encoding exons 14–16 could not be amplified in either cell line. Neither the mRNA nor the protein of neural cadherin and dysadherin were detected. Up‐regulation of Twist mRNA was found in both cell lines. In conclusion, IBH‐6 and IBH‐4 breast cancer cells show down‐regulation of E‐cadherin expression with aberrant protein localization, and up‐regulation of Twist; these features can be related to their invasive/metastatic characteristics. J. Cell. Physiol. 222: 596–605, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号