首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female‐biased sexual dimorphism in size at maturity is a common pattern observed in freshwater fishes with indeterminate growth, yet can vary in magnitude among populations for reasons that are not well understood. According to sex‐specific optimization models, female‐biased sexual size dimorphism can evolve due to sexual selection favouring earlier maturation by males, even when sexes are otherwise similar in their growth and mortality regimes. The magnitude of sexual size dimorphism is expected to depend on mortality rate. When mortality rates are low, both males and females are expected to mature at older ages and larger sizes, with size determined by the von Bertalanffy growth equation. The difference between size at maturity in males and females becomes reduced when maturing at older ages, closer to asymptotic size. This phenomenon is called von Bertalanffy buffering. The predicted relationship between the magnitude of female‐biased sexual dimorphism in age and size at maturity and mortality rate was tested in a comparative analysis of lake whitefish Coregonus clupeaformis from 26 populations across a broad latitudinal range in North America. Most C. clupeaformis populations displayed female‐biased sexual dimorphism in size and age at 50% maturity. As predicted, female‐biased sexual size dimorphism was less extreme among lower mortality, high‐latitude populations.  相似文献   

2.
Intralocus sexual conflict arises when selection favours alternative fitness optima in males and females. Unresolved conflict can create negative between‐sex genetic correlations for fitness, such that high‐fitness parents produce high‐fitness progeny of their same sex, but low‐fitness progeny of the opposite sex. This cost of sexual conflict could be mitigated if high‐fitness parents bias sex allocation to produce more offspring of their same sex. Previous studies of the brown anole lizard (Anolis sagrei) show that viability selection on body size is sexually antagonistic, favouring large males and smaller females. However, sexual conflict over body size may be partially mitigated by adaptive sex allocation: large males sire more sons than daughters, whereas small males sire more daughters than sons. We explored the evolutionary implications of these phenomena by assessing the additive genetic (co)variance of fitness within and between sexes in a wild population. We measured two components of fitness: viability of adults over the breeding season, and the number of their progeny that survived to sexual maturity, which includes components of parental reproductive success and offspring viability (RSV). Viability of parents was not correlated with adult viability of their sons or daughters. RSV was positively correlated between sires and their offspring, but not between dams and their offspring. Neither component of fitness was significantly heritable, and neither exhibited negative between‐sex genetic correlations that would indicate unresolved sexual conflict. Rather, our results are more consistent with predictions regarding adaptive sex allocation in that, as the number of sons produced by a sire increased, the adult viability of his male progeny increased.  相似文献   

3.
Trade‐offs can exist within and across environments, and constrain evolutionary trajectories. To examine the effects of competition and resource availability on trade‐offs, we grew individuals of recombinant inbred lines of Impatiens capensis in a factorial combination of five densities with two light environments (full light and neutral shade) and used a Bayesian logistic growth analysis to estimate intrinsic growth rates. To estimate across‐environment constraints, we developed a variance decomposition approach to principal components analysis, which accounted for sample size, model‐fitting, and within‐RIL variation prior to eigenanalysis. We detected negative across‐environment genetic covariances in intrinsic growth rates, although only under full‐light. To evaluate the potential importance of these covariances, we surveyed natural populations of I. capensis to measure the frequency of different density environments across space and time. We combined our empirical estimates of across‐environment genetic variance–covariance matrices and frequency of selective environments with hypothetical (yet realistic) selection gradients to project evolutionary responses in multiple density environments. Selection in common environments can lead to correlated responses to selection in rare environments that oppose and counteract direct selection in those rare environments. Our results highlight the importance of considering both the frequency of selective environments and the across‐environment genetic covariances in traits simultaneously.  相似文献   

4.
Populations at risk of extinction due to climate change may be rescued by adaptive evolution or plasticity. Selective agents, such as introduced predators, may enhance or constrain plastic or adaptive responses to temperature. We tested responses of Daphnia to temperature by collecting populations from lakes across an elevational gradient in the presence and absence of fish predators (long‐term selection). We subsequently grew these populations at two elevations in field mesocosms over two years (short‐term selection), followed by a common‐garden experiment at two temperatures in the lab to measure life‐history traits. Both long‐term and short‐term selection affected traits, suggesting that genetic variation of plasticity within populations enabled individuals to rapidly evolve plasticity in response to high temperature. We found that short‐term selection by high temperature increased plasticity for growth rate in all populations. Fecundity was higher in populations from fishless lakes and body size showed greater plasticity in populations from warm lakes (long‐term selection). Neither body size nor fecundity were affected by short‐term thermal selection. These results demonstrate that plasticity is an important component of the life‐history response of Daphnia, and that genetic variation within populations enabled rapid evolution of plasticity in response to selection by temperature.  相似文献   

5.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   

6.
Pollen size varies little within angiosperm species, but differs extensively between species, suggesting the action of strong selection. Nevertheless, the potential for genetic responses of pollen size to selection, as determined by additive genetic variance and genetic correlations with other floral traits, has received little attention. To assess this potential, we subjected Brassica rapa to artificial selection for large and small pollen during three generations. This selection caused significant divergence in pollen diameter, with additive genetic effects accounting for over 30% of the observed phenotypic variation in pollen size. Such heritable genetic variation suggests that natural selection could effect evolutionary change in this trait. Selection on pollen size also elicited correlated responses in pollen number (–), flower size (+), style length (+), and ovule number (+), suggesting that pollen size cannot evolve independently. The correlated responses of pollen number, flower size and ovule number probably reflect the genetically determined and physically constrained pattern of resource allocation in B. rapa. In contrast, the positive correlation between pollen size and style length may represent a widespread gametic‐phase disequilibrium in angiosperms that arises from nonrandom fertilization success of large pollen in pistils with long styles.  相似文献   

7.
In this article we investigate the direct and correlated responses to selection for developmental time in order to discern differences between lines in several preadult and adult life history traits of Acanthoscelides obtectus (Coleoptera, Bruchidae). Selection for fast development was about five times as effective as selection for slow development, as judged by realized heritabilities. The correlated responses on the following life‐history traits were studied: egg size, hatching success, embryonic developmental time, egg‐to‐adult viability, body weight, first day of egg laying, total fecundity, and longevity. Analyses of the terminal generation of selection showed that all life history traits examined, except for hatching success, were affected by selection. The findings suggest that body weight, total fecundity, and longevity traded off to preadult developmental time. Unlike the adult traits, none of the preadult traits showed negative correlations with developmental time. We also present data concerning the underlying genetic basis that produces changes in preadult developmental time, body weight, and egg‐to‐adult viability in the lines selected for fast and slow preadult developmental time. Additive‐dominance genetic architecture for both preadult developmental time and body weight was found. In addition, it appears that the responses to selection for preadult developmental time involved between 10 and 28 loci, which were correlated with at least one to four genes for body weight. Epistasis makes a significant contribution to genetic divergence between fast and slow selected lines only with respect to preadult viability. The observed levels of dominance and epistasis underscore the important role of nonadditive genetic effects to the adaptive diversifications of bean weevil populations.  相似文献   

8.
Thanks to genome‐scale diversity data, present‐day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up‐to‐date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self‐fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype–environment correlations and five designed to detect adaptive differentiation (based on FST or similar measures). We show that genotype–environment correlation methods have substantially more power to detect selection than differentiation‐based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype–environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations.  相似文献   

9.
Genetic correlations are often predictive of correlated responses of one trait to selection on another trait. There are examples, however, in which genetic correlations are not predictive of correlated responses. We examine how well a cross-environment genetic correlation predicts correlated responses to selection and the evolution of phenotypic plasticity in the seed beetle Stator limbatus. This beetle exhibits adaptive plasticity in egg size by laying large eggs on a resistant host and small eggs on a high-quality host. From a half-sib analysis, the cross-environment genetic correlation estimate was large and positive (rA=0.99). However, an artificial-selection experiment on egg size found that the realized genetic correlations were positive but asymmetrical; that is, they depended on both the host on which selection was imposed and the direction of selection. The half-sib estimate poorly predicted the evolution of egg size plasticity; plasticity evolved when selection was imposed on one host but did not evolve when selection was imposed on the other host. We use a simple two-locus additive genetic model to explore the conditions that can generate the observed realized genetic correlation and the observed pattern of plasticity evolution. Our model and experimental results indicate that the ability of genetic correlations to predict correlated responses to selection depends on the underlying genetic architecture producing the genetic correlation.  相似文献   

10.
Sexual size dimorphism (SSD) is thought to evolve due to sex differences in selection on body size, but it is largely unknown whether intraspecific variation in SSD reflects differences in sex‐specific selection among populations. We addressed this question by comparing viability selection between two island populations of the brown anole lizard (Anolis sagrei) that differ in the magnitude of male‐biased SSD. On both islands, females experienced stabilizing selection favoring intermediate size whereas males experienced directional selection favoring larger size. Thus, sex‐specific selection matched the overall pattern of male‐biased SSD, but population differences in the magnitude of SSD were not associated with local differences in selection. Rather, population differences in SSD appear to result from underlying differences in the environmental potential for a rapid growth, coupled with sex‐specific phenotypic plasticity. Males grew more slowly on the island with low SSD whereas growth of females did not differ between islands. Both sexes had substantially lower mass per unit length on the island with low SSD, suggesting that they were in a relatively poorer energetic condition. We propose that this energetic constraint disproportionately impacts growth of males due to their greater absolute energy requirements, thus driving intraspecific variation in SSD.  相似文献   

11.
Ectotherms tend to grow faster, but reach a smaller size when reared under warmer conditions. This temperature‐size rule (TSR) is a widespread phenomenon. Despite the generality of this pattern, no general explanation has been found. We therefore tested the relative importance of two proposed mechanisms for the TSR: (1) a stronger increase in development rate relative to growth rate at higher temperatures, which would cause a smaller size at maturity, and (2) resource limitation placing stronger constraints on growth in large individuals at higher temperatures, which would cause problems with attaining a large size in warm conditions. We raised Daphnia magna at eight temperatures to assess their size at maturity, asymptotic size, and size of their offspring. We used three clonal lines that differed in asymptotic size and growth rate. A resource allocation model was developed and fitted to our empirical data to explore the effect of both mechanisms for the TSR. The genetic lines of D. magna showed different temperature dependence of growth and development rates resulting in different responses for size at maturity. Also, at warm temperatures, growth was constrained in large, but not in small individuals. The resource allocation model could fit these empirical data well. Based on our empirical results and model explorations, the TSR of D. magna at maturity is best explained by a stronger increase in development rate relative to growth rate at high temperature, and the TSR at asymptotic size is best explained by a size‐dependent and temperature‐dependent constraint on growth, although resource limitation could also affect size at maturity. In conclusion, the TSR can take different forms for offspring size, size at maturity, and asymptotic size and each form can arise from its own mechanism, which could be an essential step toward finding a solution to this century‐old puzzle.  相似文献   

12.
Host–symbiont associations play an important role in insects. In aphids, facultative symbionts affect host plant use and increase thermal tolerance and resistance to natural enemies. In spite of these beneficial effects on aphid fitness, the frequency of facultative symbionts in aphids ranges from low to intermediate. Tradeoffs induced by symbionts could prevent the fixation of symbionts in aphid populations. Therefore, we studied the life history traits and correlations between them in 21 clones of the black bean aphid, Aphis fabae, seven of which were infected with the facultative endosymbiont Hamiltonella defensa. We found that clones harbouring H. defensa exhibited significantly higher body mass at maturity and offspring production, and a marginally higher intrinsic rate of increase. However, development time and offspring body size did not differ between symbiont‐free and infected clones. In addition, body mass at maturity was positively correlated with offspring production, offspring body size and intrinsic rate of increase, whereas development time was negatively correlated with body mass at maturity, offspring production and offspring body size. Excluding infected clones had little effect on these correlations; only correlations between body mass at maturity and offspring production, and between development time and offspring body size, became nonsignificant. Therefore, we did not find any evidence for tradeoffs between life history traits induced by symbiont infection. In fact, infected clones had higher overall fitness than symbiont‐free clones under the conditions of our experiment, suggesting that symbionts do not impose costs on aphids harbouring them. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 237–247.  相似文献   

13.
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra‐ and intersex additive genetic (co)variances and sex‐specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex‐specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex‐specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross‐sex genetic correlation = ?0.003, 95% CI = ?0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex‐specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC.  相似文献   

14.
Variation in age at maturity is an important contributor to life history and demographic variation within and among species. The optimal age at maturity can vary by sex, and the ability of each sex to evolve towards its fitness optimum depends on the genetic architecture of maturation. Using GWAS of RAD sequencing data, we show that age at maturity in Chinook salmon exhibits sex‐specific genetic architecture, with age at maturity in males influenced by large (up to 20 Mb) male‐specific haplotypes. These regions showed no such effect in females. We also provide evidence for translocation of the sex‐determining gene between two different chromosomes. This has important implications for sexually antagonistic selection, particularly that sex linkage of adaptive genes may differ within and among populations based on chromosomal location of the sex‐determining gene. Our findings will facilitate research into the genetic causes of shifting demography in Chinook salmon as well as a better understanding of sex determination in this species and Pacific salmon in general.  相似文献   

15.
Adaptive responses are probably the most effective long‐term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long‐lived, clonal plants, although these species are predicted to dominate the landscape with climate change. We studied the evolutionary potential of a perennial grass, Festuca rubra, in western Norway, in two controlled environments corresponding to extreme environments in natural populations: cold–dry and warm–wet, the latter being consistent with the climatic predictions for the country. We estimated genetic variances, covariances, selection gradients and response to selection for a wide range of growth, resource acquisition and physiological traits, and compared their estimates between the environments. We showed that the evolutionary potential of F. rubra is high in both environments, and genetic covariances define one main direction along which selection can act with relatively few constraints to selection. The observed response to selection at present is not sufficient to produce genotypes adapted to the predicted climate change under a simple, space for time substitution model. However, the current populations contain genotypes which are pre‐adapted to the new climate, especially for growth and resource acquisition traits. Overall, these results suggest that the present populations of the long‐lived clonal plant may have sufficient evolutionary potential to withstand long‐term climate changes through adaptive responses.  相似文献   

16.
Negative frequency‐dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long‐lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex‐ratio variation in two chromosome races of Rumex hastatulus, an annual, wind‐pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female‐biased sex ratios. Female‐biased sex ratios characterized most populations of R.  hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high‐density populations had the highest proportion of females, whereas smaller, low‐density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female‐biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.  相似文献   

17.
Miles CM  Wayne ML 《Genetica》2009,135(3):289-298
In order to examine the genetic relationships among life-history traits in a hermaphroditic species we used artificial selection for increased egg size and measured correlated responses across the life cycle of the serpulid polychaete Hydroides elegans, a protandrous sequential hermaphrodite. We recorded sex ratios across generations, and measured egg size, egg energy, larval volume at two time points, juvenile tube length, adult dry weight and fecundity after selection. Selection for larger eggs produced positive correlated responses in egg energy, fecundity and larval size at competence. Selection for increased egg size was also manifested by earlier sex change and this resulted in selected individuals spending less time as males relative to controls. We propose that egg size is negatively correlated with duration of andromorphy, that is, that female fitness trades off with male fitness.  相似文献   

18.
In the framework of phenotypic plasticity, tolerance to browsing can be operationally defined as a norm of reaction comparing plant performance in undamaged and damaged conditions. Genetic variation in tolerance is then indicated by heterogeneity in the slopes of norms of reaction from a population. We investigated field gentian (Gentianella campestris) tolerance to damage in the framework of phenotypic plasticity using a sample of maternal lines from natural populations grown under common garden conditions and randomly split into either a control or an artificial clipping treatment. We found a diversity of tolerance norms of reaction at both the population and family level: the impacts of clipping ranged from poor tolerance (negative slope) to overcompensation (positive slope). We detected heterogeneity in tolerance norms of reaction in four populations. Similarly, we found a variety of plastic architectural responses to clipping and genetic variation in these responses in several populations. Overall, we found that the most tolerant populations were late flowering and also exhibit the greatest plastic increases in node (meristem) production in response to damage. We studied damage-imposed natural selection on plasticity in plant architecture in 10 of the sampled populations. In general, there was strong positive direct selection on final number of nodes for both control and clipped plants. However, the total selection on nodes (direct + indirect selection) within each treatment category depended heavily on the frequency of damage and cross-treatment genetic correlations in node production. In some cases, strong correlated responses to selection across the damage treatment led to total selection against nodes in the more rare environment. This could ultimately lead to the evolution of maladaptive phenotypes in one or both of the treatment categories. These results suggest that tolerance and a variety of architectural responses to damage may evolve by both direct and indirect responses to natural selection. While the present study demonstrates the potential importance of cross-treatment genetic correlations in directing the evolution of tolerance traits, such as branch or node production, we did not find any strong evidence of genetic trade-offs in candidate tolerance traits between undamaged and damaged conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Population genetic theory predicts that the availability of appropriate standing genetic variation should facilitate rapid evolution when species are introduced to new environments. However, few tests of rapid evolution have been paired with empirical surveys for the presence of previously identified adaptive genetic variants in natural populations. In this study, we examined local adaptation to soil Al toxicity in the introduced range of sweet vernal grass (Anthoxanthum odoratum), and we genotyped populations for the presence of Al tolerance alleles previously identified at the long‐term ecological Park Grass Experiment (PGE, Harpenden, UK) in the species native range. We found that markers associated with Al tolerance at the PGE were present at appreciable frequency in introduced populations. Despite this, there was no strong evidence of local adaptation to soil Al toxicity among populations. Populations demonstrated significantly different intrinsic root growth rates in the absence of Al. This suggests that selection on correlated root growth traits may constrain the ability of populations to evolve significantly different root growth responses to Al. Our results demonstrate that genotype–phenotype associations may differ substantially between the native and introduced parts of a species range and that adaptive alleles from a native species range may not necessarily promote phenotypic differentiation in the introduced range.  相似文献   

20.
This paper reports the results of an investigation into whether selection on genetically based differences in the timing or rate of development (heterochrony) can give rise to nonadaptive morphological differences among individual frogs. We used a quantitative-genetics approach to examine the relationships among the life-history characters time to metamorphosis and larval-growth rate and a functionally significant morphological features, relative hind-limb length, in the spring peeper, Hyla crucifer. Time to metamorphosis and growth rate had low heritabilities in our population. Morphological traits had moderate heritabilities. There were positive genetic correlations between the life-history traits and the components of relative hind-limb length but no significant correlations with the shape variable itself. We used field observations of pond-drying time and experimental results of selection on growth rate to simulate the correlated responses of hind-limb shape to four reasonable selection regimes on the life-history traits. We found little evidence to suggest that relative hind-limb length would display much of a correlated response to such selection. The differences in relative hind-limb length seen among closely related species or among populations of a single species that appear to be unrelated to performance differences are not obviously explicable as neutral correlated responses to selection on larval traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号