首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA‐damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1‐dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA–ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA‐damaging agents. Finally, we demonstrate that the RPA1‐binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA‐damaging therapeutic agents.  相似文献   

2.
DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.  相似文献   

3.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

4.
PARP inhibitors have been approved for the therapy of cancers with homologous recombination (HR) deficiency based on the concept of “synthetic lethality”. However, glioblastoma (GBM) patients have gained little benefit from PARP inhibitors due to a lack of BRCA mutations. Herein, we demonstrated that concurrent treatment with the PARP inhibitor rucaparib and the PI3K inhibitor BKM120 showed synergetic anticancer effects on GBM U251 and U87MG cells. Mechanistically, BKM120 decreased expression of HR molecules, including RAD51 and BRCA1/2, and reduced HR repair efficiency in GBM cells, therefore increasing levels of apoptosis induced by rucaparib. Furthermore, we discovered that the two compounds complemented each other in DNA damage response and drug accumulation. Notably, in the zebrafish U87MG-RFP orthotopic xenograft model, nude mouse U87MG subcutaneous xenograft model and U87MG-Luc orthotopic xenograft model, combination showed obviously increased antitumor efficacy compared to each monotherapy. Immunohistochemical analysis of tumor tissues indicated that the combination obviously reduced expression of HR repair molecules and increased the DNA damage biomarker γ-H2AX, consistent with the in vitro results. Collectively, our findings provide new insight into combined blockade of PI3K and PARP, which might represent a promising therapeutic approach for GBM.Subject terms: Targeted therapies, Drug development  相似文献   

5.
Cyclin-dependent kinase 1 (CDK1) orchestrates the transition from the G2 phase into mitosis and as cancer cells often display enhanced CDK1 activity, it has been proposed as a tumor specific anti-cancer target. Here we show that the effects of CDK1 inhibition are not restricted to tumor cells but can also reduce viability in non-cancer cells and sensitize them to radiation in a cell cycle dependent manner.

Radiosensitization by the specific CDK1 inhibitor, RO-3306, was determined by colony formation assays in three tumor lines (HeLa, T24, SQ20B) and three non-cancer lines (HFL1, MRC-5, RPE). Initial results showed that CDK1 inhibition radiosensitized tumor cells, but did not sensitize normal fibroblasts and epithelial cells in colony formation assays despite effective inhibition of CDK1 signaling. Further investigation showed that normal cells were less sensitive to CDK1 inhibition because they remained predominantly in G1 for a prolonged period when plated in colony formation assays. In contrast, inhibiting CDK1 a day after plating, when the cells were going through G2/M phase, reduced their clonogenic survival both with and without radiation. Our finding that inhibition of CDK1 can damage normal cells in a cell cycle dependent manner indicates that targeting CDK1 in cancer patients may lead to toxicity in normal proliferating cells. Furthermore, our finding that cell cycle progression becomes easily stalled in non-cancer cells under normal culture conditions has general implications for testing anti-cancer agents in these cells.  相似文献   


6.
S Visp  C Cazaux  C Lesca    M Defais 《Nucleic acids research》1998,26(12):2859-2864
Rad51 proteins share both structural and functional homologies with the bacterial recombinase RecA. The human Rad51 (HsRad51) is able to catalyse strand exchange between homologous DNA molecules in vitro . However the biological functions of Rad51 in mammals are largely unknown. In order to address this question, we have cloned hamster Rad51 cDNA and overexpressed the corresponding protein in CHO cells. We found that 2-3-fold overexpression of the protein stimulated the homologous recombination between integrated genes by 20-fold indicating that Rad51 is a functional and key enzyme of an intrachromosomal recombination pathway. Cells overexpressing Rad51 were resistant to ionizing radiation when irradiated in late S/G2phase of the cell cycle. This suggests that Rad51 participate in the repair of double-strand breaks most likely by homologous recombination involving sister chromatids formed after the S phase.  相似文献   

7.
Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle‐related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re‐entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK‐related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage.  相似文献   

8.
Histone H2AX phosphorylation on a C-terminal serine residue to form "γ-H2AX" is a critical early event in the chromatin response to chromosomal DNA double strand breaks in eukaryotes. In mammalian cells, γ-H2AX is formed when H2AX is phosphorylated on serine 139 by ATM or by other DNA damage response kinases. H2AX prevents genomic instability and tumorigenesis, and supports class-switch recombination at immunoglobulin heavy chain loci in mammals. We showed previously that H2AX controls double strand break repair by homologous recombination (HR) between sister chromatids. The HR functions of H2AX are mediated by interaction of γ-H2AX with the chromatin-associated adaptor protein MDC1. H2AX is potentially subject to additional post-translational modifications associated with the DNA damage response and with other chromatin functions. To test this idea, we used mass spectroscopy to identify H2AX residues additional to serine 139 that are post-translationally modified following exposure of cells to ionizing radiation (IR) and identified several new IR-responsive residues of H2AX. We determined the impact of IR-responsive H2AX residues on cellular resistance to IR and on H2AX-dependent homologous recombination, and also analyzed the contribution to HR of other known or potential post-translationally modified residues of H2AX. The results suggest that the HR and IR-resistance functions of H2AX are controlled in large part by specific MDC1-interacting residues of H2AX, but that additional H2AX residues modulate these core functions of H2AX.  相似文献   

9.
Histone H2AX phosphorylation on a C-terminal serine residue to form “γ-H2AX” is a critical early event in the chromatin response to chromosomal DNA double strand breaks in eukaryotes. In mammalian cells, γ-H2AX is formed when H2AX is phosphorylated on serine 139 by ATM or by other DNA damage response kinases. H2AX prevents genomic instability and tumorigenesis, and supports class-switch recombination at immunoglobulin heavy chain loci in mammals. We showed previously that H2AX controls double strand break repair by homologous recombination (HR) between sister chromatids. the HR functions of H2AX are mediated by interaction of γ-H2AX with the chromatin-associated adaptor protein MDC1. H2AX is potentially subject to additional post-translational modifications associated with the DNA damage response and with other chromatin functions. To test this idea, we used mass spectroscopy to identify H2AX residues additional to serine 139 that are post-translationally modified following exposure of cells to ionizing radiation (IR) and identified several new IR-responsive residues of H2AX. We determined the impact of IR-responsive H2AX residues on cellular resistance to IR and on H2AX-dependent HR, and also analyzed the contribution to HR of other known or potential post-translationally modified residues of H2AX. The results suggest that the HR and IR-resistance functions of H2AX are controlled in large part by specific MDC1-interacting residues of H2AX, but that additional H2AX residues modulate these core functions of H2AX.Key words: H2AX, homologous recombination, ionizing radiation, double strand break repair, histone, histone code, post-translational modification, chromatin, DNA repair  相似文献   

10.
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double‐strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error‐free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I‐SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR‐white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.  相似文献   

11.
12.
Wang H  Wang X  Iliakis G  Wang Y 《Radiation research》2003,159(3):420-425
Caffeine inhibits ATM and ATR, two important checkpoint regulators, abolishes ionizing radiation-induced checkpoint response, and radiosensitizes cells. Radiation-induced DNA double-strand breaks (DSBs) are repaired by two major processes, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). It remains unclear which repair process, HRR or NHEJ, is affected when the checkpoint responses are abolished by caffeine. In this study we observed the effect of caffeine on gene-targeted DT40 chicken lymphoblast cells. We show that caffeine efficiently abolishes S- and G(2)-phase checkpoint responses after irradiation in all cell lines tested and greatly radiosensitizes wild-type and ATM(-/-) cells, the partially checkpoint-deficient cells. However, caffeine has a much smaller radiosensitizing effect on RAD54(-/-) cells and has no effect on RAD51-deficient cells. RAD51 and RAD54 are the important factors for HRR. Our results indicate that the checkpoint responses abolished by caffeine (S and G(2)) mainly affect HRR, which results in cell radiosensitization.  相似文献   

13.
The combination of cisplatin and ionizing radiation (IR) treatment represents a common modality for treating a variety of cancers. These two agents provide considerable synergy during treatment, although the mechanism of this synergy remains largely undefined. We have investigated the mechanism of cisplatin sensitization to IR using a combination of in vitro and in vivo experiments. A clear synergistic interaction between cisplatin and IR is observed in cells proficient in nonhomologous end joining (NHEJ) catalyzed repair of DNA double-strand breaks (DSB). In contrast, no interaction between cisplatin and IR is observed in NHEJ-deficient cells. Reconstituted in vitro NHEJ assays revealed that a site-specific cisplatin-DNA lesion near the terminus results in complete abrogation of NHEJ catalyzed repair of the DSB. These data show that the cisplatin-IR synergistic interaction requires the DNA-dependent protein kinase-dependent NHEJ pathway for joining of DNA DSBs, and the presence of a cisplatin lesion on the DNA blocks this pathway. In the absence of a functional NHEJ pathway, although the cells are hypersensitive to IR, there is no synergistic interaction with cisplatin.  相似文献   

14.
15.
Single-stranded DNA oligonucleotide (SSO)-mediated gene repair has great potentials for gene therapy and functional genomic studies. However, its underlying mechanism remains unclear. Previous studies from other groups have suggested that DNA damage response via the ATM/ATR pathway may be involved in this process. In this study, we measured the effect of two ATM/ATR inhibitors caffeine and pentoxifylline on the correction efficiency in SSO-mediated gene repair. We also checked their effect on double-stranded break (DSB)-induced homologous recombination repair (HRR) as a control, which is well known to be dependent on the ATM/ATR pathway. We found these inhibitors could completely inhibit DSB-induced HRR, but could only partially inhibit SSO-mediated process, indicating SSO-mediated gene repair is not dependent on the ATM/ATR pathway. Furthermore, we found that thymidine treatment promotes SSO-mediated gene repair, but inhibits DSB-induced HRR. Collectively, our results demonstrate that SSO-mediated and DSB-induced gene repairs have distinct mechanisms.  相似文献   

16.
17.
In this study, we provide evidence that endoplasmic reticulum (ER) stress suppresses DNA double-strand break (DSB) repair and increases radiosensitivity of tumor cells by altering Rad51 levels. We show that the ER stress inducer tunicamycin stimulates selective degradation of Rad51 via the 26S proteasome, impairing DSB repair and enhancing radiosensitivity in human lung cancer A549 cells. We also found that glucose deprivation, which is a physiological inducer of ER stress, triggered similar events. These findings suggest that ER stress caused by the intratumoral environment influences tumor radiosensitivity, and that it has potential as a novel target to improve cancer radiotherapy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号