共查询到20条相似文献,搜索用时 0 毫秒
1.
Altered sialylation of glycosphingolipids is observed in cancer as a ubiquitous phenotype, leading to the appearance of tumor-associated antigens, aberrant adhesion and disturbance of transmembrane signaling. To understand the pathological significance of aberrant alterations of gangliosides in cancer, our studies have been focused on sialidase, which is responsible for the removal of sialic acids from glycoproteins and glycolipids. Among human sialidases so far identified, sialidase NEU3 is a key enzyme for ganglioside degradation because of its uniqueness both in its localization in the plasma membrane and in specifically hydrolyzing gangliosides. NEU3 is markedly up-regulated in many types of cancers including colon and renal carcinomas and suppresses apoptosis of cancer cells. The present paper briefly summarizes our recent results on the sialidase alterations and their significance in cancer. NEU3 is indeed closely related to malignancy and thus may be a potential target for cancer diagnosis and therapy. 相似文献
2.
Cross AS Hyun SW Miranda-Ribera A Feng C Liu A Nguyen C Zhang L Luzina IG Atamas SP Twaddell WS Guang W Lillehoj EP Puché AC Huang W Wang LX Passaniti A Goldblum SE 《The Journal of biological chemistry》2012,287(19):15966-15980
The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not. 相似文献
3.
Magesh S Moriya S Suzuki T Miyagi T Ishida H Kiso M 《Bioorganic & medicinal chemistry letters》2008,18(2):532-537
We here report the design and synthesis of selective human lysosomal sialidase (NEU1) inhibitors. A series of amide-linked C9 modified DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) analogues were synthesized and their inhibitory activities against all four human sialidases (NEU1-NEU4) were determined. Structure-based approach was used to investigate the basis of selectivity of the compounds with experimentally observed activity. Results from the present study are found to be informative in a qualitative manner for the further design of isoform selective human sialidase inhibitors for therapeutic value. 相似文献
4.
5.
《Redox report : communications in free radical research》2013,18(3):115-124
AbstractGlutathione is an intracellular antioxidant that often becomes depleted in pathologies with high oxidative loads. We investigated the provision of cysteine for glutathione synthesis to the human erythrocyte (red blood cell; RBC). Almost all plasma cysteine exists as cystine, its oxidized form. In vitro, extracellular cystine at 1.0 mM sustained glutathione synthesis in glutathione-depleted RBCs, at a rate of 0.206 ± 0.036 μmol (L RBC)?1min?1 only 20% of the maximum rate obtained with cysteine or N-acetylcysteine. In plasma-free solutions, N-acetylcysteine provides cysteine by intracellular deacetylation but to achieve maximum rates of glutathione synthesis by this process in vivo, plasma N-acetylcysteine concentrations would have to exceed 1.0 mM, which is therapeutically unattainable. 1H-NMR experiments demonstrated that redox exchange reactions between NAC and cystine produce NAC-cysteine, NAC-NAC and cysteine. Calculations using a mathematical model based on these results showed that plasma concentrations of N-acetylcysteine as low as 100 μM, that are attainable therapeutically, could potentially react with plasma cystine to produce ~50 μM cysteine, that is sufficient to produce maximal rates of glutathione synthesis. We conclude that the mechanism of action of therapeutically administered N-acetylcysteine is to reduce plasma cystine to cysteine that then enters the RBC and sustains glutathione synthesis. 相似文献
6.
7.
In this report we present evidence for the existence of a lysosomal ganglioside sialidase. The sialidase activity was solubilized by sonication and stimulated by cholate. The absence of ganglioside sialidase activity in sialidosis patients indicates that lysosomal sialidase is active towards gangliosides and glycoproteins. The plasma membranes were associated with two types of ganglioside sialidase activities, one was enhanced by cholate while the other was partially inhibited by this detergent. 相似文献
8.
《Redox report : communications in free radical research》2013,18(6):263-271
AbstractThe aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H2O2; ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation. 相似文献
9.
10.
Relations between plasma membrane and lysosomal membrane. 1. Fate of covalently labelled plasma membrane protein 总被引:2,自引:0,他引:2
To quantify the kinetics of the plasma membrane flow into lysosomes, we covalently labelled at 4 degrees C the pericellular membrane of rat fibroblasts and followed label redistribution to the lysosomal membrane using purified lysosomal preparations. The polypeptides were, either labelled with 125I by the lactoperoxidase procedure, or conjugated to [3H]peroxidase using bisdiazobenzidine as a bifunctional reagent. Both labels were initially bound to plasma membrane, as indicated by their equilibrium density in sucrose or Percoll gradients and their displacement by digitonin, as well as by electron microscopy. Upon cell incubation at 37 degrees C, both covalent labels were lost from cells with diphasic kinetics: a minor component (35% of cell-associated labels) was rapidly released (half-life less than 1 h), and most label (65%) was released slowly (half-life was 20 h for incorporated 125I and 27 h for 3H). Immediately after labelling up to 30 h after incubation at 37 degrees C, the patterns of 125I-polypeptides quantified by autoradiography after SDS-PAGE were indistinguishable, indicating no preferential turnover for the major plasma membrane polypeptides. The redistribution of both labels to lysosomes was next quantified by cell fractionation. At equilibrium (between 6 and 25 h of cell incubation) 2-4% of cell-associated 125I label was recovered with the purified lysosomal membranes. By contrast, when 3H-labelled cells were incubated for 16 h, most of the label codistributed with lysosomes. However, only 6% of cell-associated 3H was bound to lysosomal membrane. These results indicate that in cultured rat fibroblasts, a minor fraction of plasma membrane polypeptides becomes associated with the lysosomal membrane and is constantly equilibrated by membrane traffic. 相似文献
11.
NEU1 sialidase expressed in human airway epithelia regulates epidermal growth factor receptor (EGFR) and MUC1 protein signaling 总被引:1,自引:0,他引:1
Lillehoj EP Hyun SW Feng C Zhang L Liu A Guang W Nguyen C Luzina IG Atamas SP Passaniti A Twaddell WS Puché AC Wang LX Cross AS Goldblum SE 《The Journal of biological chemistry》2012,287(11):8214-8231
Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli. 相似文献
12.
Idolo Tedesco Stefania Moccia Silvestro Volpe Giovanna Alfieri Daniela Strollo Stefania Bilotto 《Free radical research》2016,50(5):557-569
In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13–73?μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70–100?μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity. 相似文献
13.
Magini A Mencarelli S Tancini B Ciccarone V Urbanelli L Hasilik A Emiliani C 《Bioscience reports》2008,28(4):229-237
Hex (beta-hexosaminidase) is a soluble glycohydrolase involved in glycoconjugate degradation in lysosomes, however its localization has also been described in the cytosol and PM (plasma membrane). We previously demonstrated that Hex associated with human fibroblast PM as the mature form, which is functionally active towards G(M2) ganglioside. In the present study, Hex was analysed in a lysosomal membrane-enriched fraction obtained by purification from highly purified human placenta lysosomes. These results demonstrate the presence of mature Hex associated with the lysosomal membrane and displaying, as observed for the PM-associated form, an acidic optimum pH. When subjected to sodium carbonate extraction, the enzyme behaved as a peripheral membrane protein, whereas Triton X-114 phase separation confirmed its partially hydrophilic nature, characteristics which are shared with the PM-associated form of Hex. Moreover, two-dimensional electrophoresis indicated a slight difference in the pI of beta-subunits in the membrane and the soluble forms of the lysosomal Hex. These results reveal a new aspect of Hex biology and suggest that a fully processed membrane-associated form of Hex is translocated from the lysosomal membrane to the PM by an as yet unknown mechanism. We present a testable hypothesis that, at the cell surface, Hex changes the composition of glycoconjugates that are known to be involved in intercellular communication and signalling. 相似文献
14.
15.
Evidence for sialidase hydrolyzing gangliosides GM2 and GM1 in rat liver plasma membrane 总被引:2,自引:0,他引:2
Rat liver plasma membrane removed sialic acid from mixed bovine brain gangliosides more efficiently than from sialyllactose and orosomucoid with an optimal pH of 4.5. When individual gangliosides, each labeled with [14C]sialic acid or [3H]sphingosine, were tested, not only GD1a and GM3 but also GM2 and GM1, both of which had been considered to resist mammalian sialidases, were desialylated. The products of GM2 and GM1 hydrolysis were identified as asialo-GM2 and asialo-GM1, respectively, by thin-layer chromatography. 相似文献
16.
Anastasia L Holguera J Bianchi A D'Avila F Papini N Tringali C Monti E Villar E Venerando B Muñoz-Barroso I Tettamanti G 《Biochimica et biophysica acta》2008,1780(3):504-512
The paramyxovirus Newcastle Disease Virus (NDV) binds to sialic acid-containing glycoconjugates, sialoglycoproteins and sialoglycolipids (gangliosides) of host cell plasma membrane through its hemagglutinin-neuraminidase (sialidase) HN glycoprotein. We hypothesized that the modifications of the cell surface ganglioside pattern determined by over-expression of the mammalian plasma-membrane associated, ganglioside specific, sialidase NEU3 would affect the virus-host cell interactions. Using COS7 cells as a model system, we observed that over-expression of the murine MmNEU3 did not affect NDV binding but caused a marked reduction in NDV infection and virus propagation through cell-cell fusion. Moreover, since GD1a was greatly reduced in COS7 cells following NEU3-over-expression, we added [(3)H]-labelled GD1a to COS7 cells under conditions that block intralysosomal metabolic processing, and we observed a marked increase of GD1a cleavage to GM1 during NDV infection, indicating a direct involvement of the virus sialidase and host cell GD1a in NDV infectivity. Therefore, the decrease of GD1a in COS7 cell membrane upon MmNEU3 over-expression is likely to be instrumental to NDV reduced infection. Evidence was also provided for the preferential association of NDV-HN at 4 degrees C to detergent resistant microdomains (DRMs) of COS7 cells plasma membranes. 相似文献
17.
Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family 总被引:1,自引:0,他引:1
Monti E Bassi MT Bresciani R Civini S Croci GL Papini N Riboni M Zanchetti G Ballabio A Preti A Tettamanti G Venerando B Borsani G 《Genomics》2004,83(3):445-453
Several mammalian sialidases have been cloned so far and here we describe the identification and expression of a new member of the human sialidase gene family. The NEU4 gene, identified by searching sequence databases for entries showing homologies to the human cytosolic sialidase NEU2, maps in 2q37 and encodes a 484-residue protein. The polypeptide contains all the typical sialidase amino acid motifs and, apart from an amino acid stretch that appears unique among mammalian sialidases, shows a high degree of homology for NEU2 and the plasma membrane-associated (NEU3) sialidases. RNA dot-blot analysis showed a low but wide expression pattern, with the highest level in liver. Transient transfection in COS7 cells allowed the detection of a sialidase activity toward the artificial substrate 4MU-NeuAc in the acidic range of pH. Immunofluorescence staining and Western blot analysis demonstrated the association of NEU4 with the inner cell membranes. 相似文献
18.
Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane 总被引:3,自引:0,他引:3
Sano H Eguez L Teruel MN Fukuda M Chuang TD Chavez JA Lienhard GE McGraw TE 《Cell metabolism》2007,5(4):293-303
GLUT4 trafficking to the plasma membrane of muscle and fat cells is regulated by insulin. An important component of insulin-regulated GLUT4 distribution is the Akt substrate AS160 rab GTPase-activating protein. Here we show that Rab10 functions as a downstream target of AS160 in the insulin-signaling pathway that regulates GLUT4 translocation in adipocytes. Overexpression of a mutant of Rab10 defective for GTP hydrolysis increased GLUT4 on the surface of basal adipocytes. Rab10 knockdown resulted in an attenuation of insulin-induced GLUT4 redistribution to the plasma membrane and a concomitant 2-fold decrease in GLUT4 exocytosis rate. Re-expression of a wild-type Rab10 restored normal GLUT4 translocation. The basal increase in plasma-membrane GLUT4 due to AS160 knockdown was partially blocked by knocking down Rab10 in the same cells, further indicating that Rab10 is a target of AS160 and a positive regulator of GLUT4 trafficking to the cell surface upon insulin stimulation. 相似文献
19.
Haemoglobin-free human erythrocyte ghosts that were prepared in the presence of EDTA and were then exposed to Ca2+ showed a substantial loss of phosphatidylinositol phosphate and phosphatidylinositol diphosphate, measured either chemically or by loss of 32P from the lipids of prelabelled membranes. At the same time there was, as reported previously (Allan, D. and Michell, R.H., (1976) Biochim. Biophys. Acta 455, 824–830), an approximately equivalent rise in the diacylglycerol content of the membranes. Analysis of the 32P-labelled water-soluble material released during this process showed that the major products were inositol diphosphate and inositol triphosphate. No change was seen in the phosphatidylinositol or phosphatidate content of the membranes, and there was no Ca2+-activated loss of 32P from the phosphatidate of prelabelled membranes: this suggests that Ca2+ did not activate phosphoinositide phosphomonoesterases or phosphatidate phosphomonoesterase in human erythrocyte membranes. It is concluded that human erythrocyte membranes contain at their cytoplasmic surface a Ca2+-activated phosphodiesterase that is active against both phosphatidylinositol phosphate and phosphatidylinositol diphosphate. Rabbit erythrocytes also contained this enzyme, but in these cells there was also evidence for the presence of a Ca2+-activated phosphatidate phosphomonoesterase. 相似文献
20.