首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Drosophila, the Gal4‐UAS system is used to drive ectopic gene expression in a tissue‐specific manner. In this system, transgenic flies expressing tissue specific Gal4 are crossed to a line in which the gene to be expressed is under the control of a Gal4‐responsive UAS sequence. The resulting progeny express the gene of interest in the pattern of the particular Gal4 line. Since a given UAS‐transgene can be driven by any Gal4 line, this system is predominantly limited by available Gal4 lines. Here we report the characterization of a novel line, DE‐Gal4, which in the eye is expressed in the dorsal compartment for the majority of development. Furthermore, we use functional tests to show that the DE‐Gal4 line is a useful tool with which to manipulate gene expression in half of the developing eye. genesis 48:3–7, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.  相似文献   

3.
《Developmental cell》2021,56(24):3393-3404.e7
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   

4.
【目的】Gal80~(ts)与Gal4组合驱动UAS转基因表达是黑腹果蝇Drosophila melanogaster研究中常用的转基因过表达遗传学工具,通过温度控制实现对UAS转基因表达的灵活开关。Gal80~(ts)是一种温度敏感型蛋白,低温下(18℃)与Gal4蛋白结合并抑制其转录活力,高温下(29℃)解除对Gal4的抑制,从而允许Gal4结合UAS位点,启动UAS转基因的表达。但是从18~29℃的开关只能强烈过表达UAS转基因,而不能灵活调控转基因的表达水平。本实验系统研究一系列温度下转基因的表达水平,从而实现该体系对转基因的表达水平的灵活控制。【方法】以果蝇翅芽这一常用器官组织为研究模型,以2种Gal4品系(dpp-Gal4和en-Gal4,分别由decapentaplgic和engrailed基因的启动子驱动)分别与tub-Gal80~(ts)(微管蛋白基因tubulin启动子驱动)基因重组后,再分别与UAS-wg(wingless)转基因品系杂交;在一系列温度(18,25,27.5,28,28.5和30℃)下进行子代幼虫培养,通过免疫组化染色揭示并量化分析转基因wg在3龄幼虫翅芽上的表达水平。【结果】18~25℃培养条件下,Gal80~(ts)与Gal4组合系统中的UAS转基因不能表达;30℃时培养,转基因强烈地过表达;在25~30℃区间内,随着温度升高,转基因表达水平逐渐上升。【结论】在25~30℃之间的温度调控可以实现对Gal80~(ts)与Gal4组合系统中的UAS转基因表达水平的调控。本研究结果对调控转基因表达程度有重要价值。  相似文献   

5.
Manipulating an exogenous or endogenous gene of interest at a defined level is critical for a wide variety of experiments.The Gal4/UAS system has been widely used to direct gene expression for studying complex genetic and biological problems in Drosophila melanogaster and other model organisms.Driven by a given tissue-specific Gal4,expressing UAS-transgene or UAS-RNAi(RNA interference)could be used to up-or down-regulate target gene expression,respectively.However,the efficiency of the Gal4/UAS system is roughly predefined by properties of transposon vector constructs and the insertion site in the transgenic stock.Here,we describe a simple way to modulate optomotor blind(omb)expression levels in its endogenous expression region of the wing disc.We co-expressed UAS-omb and UAS-omb-RNAi together under the control of dpp-Gal4 driver which is expressed in the omb expression region of the wing pouch.The repression effect is more sensitive to temperature than that of overexpression.At low temperature,overexpression plays a dominant role but the efficiency is attenuated by UAS-omb-RNAi.In contrast,at high temperature RNAi predominates in gene expression regulation.By this strategy,we could manipulate omb expression levels at a moderate level.It allows us to manipulate omb expression levels in the same tissue between overexpression and repression at different stages by temperature control.  相似文献   

6.
7.
8.
9.
The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB‐mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB‐mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs. genesis 53:431–439, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The Gal4/ UAS binary method is powerful for gene and neural circuitry manipulation in Drosophila. For most neurobiological studies, however, Gal4 expression is rarely tissue-specific enough to allow for precise correlation of the circuit with behavioral readouts. To overcome this major hurdle, we recently developed the FINGR method to achieve a more restrictive Gal4 expression in the tissue of interest. The FINGR method has three components: 1) the traditional Gal4/UAS system; 2) a set of FLP/FRT-mediated Gal80 converting tools; and 3) enhancer-trap FLP (ET-FLP). Gal4 is used to define the primary neural circuitry of interest. Paring the Gal4 with a UAS-effector, such as UAS-MJD78Q or UAS-Shits, regulates the neuronal activity, which is in turn manifested by alterations in the fly behavior. With an additional UAS-reporter such as UAS-GFP, the neural circuit involved in the specific behavior can be simultaneously mapped for morphological analysis. For Gal4 lines with broad expression, Gal4 expression can be restricted by using two complementary Gal80-converting tools: tubP>Gal80> (''flip out'') and tubP>stop>Gal80 (''flip in''). Finally, investigators can turn Gal80 on or off, respectively, with the help of tissue-specific ET-FLP. In the flip-in mode, Gal80 will repress Gal4 expression wherever Gal4 and ET-FLP intersect. In the flip-out mode, Gal80 will relieve Gal4 repression in cells in which Gal4 and FLP overlap. Both approaches enable the restriction of the number of cells in the Gal4-defined circuitry, but in an inverse pattern. The FINGR method is compatible with the vast collection of Gal4 lines in the fly community and highly versatile for traditional clonal analysis and for neural circuit mapping. In this protocol, we demonstrate the mapping of FLP expression patterns in select ET-FLPx2 lines and the effectiveness of the FINGR method in photoreceptor cells. The principle of the FINGR method should also be applicable to other genetic model organisms in which Gal4/UAS, Gal80, and FLP/FRT are used.  相似文献   

11.
TTP在哺乳动物许多关键基因表达的转录后水平上起调控作用,Tis11是TTP蛋白在果蝇中的同源物.目前还没有现成的可用于研究Tis11功能的基因敲除或敲低的果蝇.为了获得肌动蛋白启动子或者热激蛋白启动子驱动表达Tis11 mRNA干扰序列的具有较高干扰效率的Tis11基因干扰果蝇,将肌动蛋白启动子或者热激启动子驱动表达的GAL4果蝇品系与融合有Tis11 mRNA干扰序列的UAS品系杂交,收集同时带有GAL4基因和UAS序列的子一代果蝇.提取所收集果蝇的总RNA,将其中的mRNA逆转录成cDNA,并设计检测Tis11基因的特异性引物,然后通过Real-time PCR检测Tis11 mRNA的表达情况.结果显示所收集的能表达Tis11基因干扰序列的子一代果蝇与不能表达Tis11基因干扰序列的对照果蝇相比,其体内Tis11 mRNA的表达水平下降明显.收集的果蝇其体内所表达的干扰序列对Tis11 mRNA干扰效果显著,我们成功获得了Tis11基因的RNA干扰果蝇.  相似文献   

12.
13.
The Drosophila testis has proven to be a valuable model organ for investigation of germline stem cell (GSC) maintenance and differentiation as well as elucidation of the genetic programs that regulate differentiation of daughter spermatogonia. Development of germ cell specific GAL4 driver transgenes has facilitated investigation of gene function in GSCs and spermatogonia but specific GAL4 tools are not available for analysis of postmitotic spermatogonial differentiation into spermatocytes. We have screened publically available pGT1 strains, a GAL4‐encoding gene trap collection, to identify lines that can drive gene expression in late spermatogonia and early spermatocytes. While we were unable to identify any germline‐specific drivers, we did identify an insertion in the chiffon locus, which drove expression specifically in early spermatocytes within the germline along with the somatic cyst cells of the testis. genesis 50:914–920, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Behavior is a manifestation of temporally and spatially defined neuronal activities. To understand how behavior is controlled by the nervous system, it is important to identify the neuronal substrates responsible for these activities, and to elucidate how they are integrated into a functional circuit. I introduce a novel and general method to conditionally perturb anatomically defined neurons in intact Drosophila. In this method, a temperature‐sensitive allele of shibire (shits1) is overexpressed in neuronal subsets using the GAL4/UAS system. Because the shi gene product is essential for synaptic vesicle recycling, and shits1 is semidominant, a simple temperature shift should lead to fast and reversible effects on synaptic transmission of shits1 expressing neurons. When shits1 expression was directed to cholinergic neurons, adult flies showed a dramatic response to the restrictive temperature, becoming motionless within 2 min at 30°C. This temperature‐induced paralysis was reversible. After being shifted back to the permissive temperature, they readily regained their activity and started to walk in 1 min. When shits1 was expressed in photoreceptor cells, adults and larvae exhibited temperature‐dependent blindness. These observations show that the GAL4/UAS system can be used to express shits1 in a specific subset of neurons to cause temperature‐dependent changes in behavior. Because this method allows perturbation of the neuronal activities rapidly and reversibly in a spatially and temporally restricted manner, it will be useful to study the functional significance of particular neuronal subsets in the behavior of intact animals. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 81–92, 2001  相似文献   

15.
Targeted inactivation of neurons by expression of toxic gene products is a useful tool to assign behavioral functions to specific neurons or brain structures. Of a variety of toxic gene products tested, tetanus neurotoxin light chain (TNT) has the least severe side effects and can completely block chemical synapses. By using the GAL4 system to drive TNT expression in a subset of chemo‐ and mechanosensory neurons, we detected walking and flight defects consistent with blocking of relevant sensory information. We also found, for the first time, an olfactory behavioral phenotype associated with blocking of a specific subset of antennal chemoreceptors. Similar behavioral experiments with GAL4 lines expressing in different subsets of antennal chemoreceptors should contribute to an understanding of olfactory coding in Drosophila. To increase the utility of the GAL4 system for such purposes, we have designed an inducible system that allows us to circumvent lethality caused by TNT expression during early development. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 221–233, 2002; DOI 10.1002/neu.10029  相似文献   

16.
17.
The analysis of mutants is an indispensable approach towards characterizing gene function. Combining several tools of Drosophila genetics, we designed a new strategy for a mutagenesis screen which is fast, easy-to-apply, and cheap. The combination of a cell-specific Gal4 line with an upstream activating sequence-green fluorescent protein (UAS-GFP) allows the in vivo detection of the cells or tissues of interest without the need for fixation and staining. To further simplify and accelerate the screening procedure, we generated recombinant flies that carry the Gal80 transgene in balancer chromosomes. Gal80 inactivates Gal4; and thus prevents GFP-expression during embryonic and postembryonic development in all individuals carrying the balancer chromosomes. This allows for an easy distinction in vivo between heterozygous and homozygous mutants, the latter being the only ones expressing GFP. Since most of the fly strains and balancer chromosomes can be substituted, this method is suitable for nearly any mutagenesis screen that does not have major restrictions.  相似文献   

18.
eql (equatorial-less) is a recessive lethal mutation on the second chromosome of Drosophila melanogasfer. J. Campos-Ortega found that eql clones in somatic mosaic flies have reduced numbers of photoreceptor cells, and he suggested that only the R1, R6, and R7 photoreceptor cells were missing in this mutant. These photoreceptor cells help to define the inverted orientation of ommatidial facets along the equatorial midline of the fly eye, hence the mutation was named “equatorial-less”. We have conducted a detailed analysis of the eql mutation, by serial section reconstruction of eql clones marked with bw or w? in somatic mosaic flies. We found that all photoreceptor cell types (Rl–R8) could be deleted by the eql mutation, and in rare cases the number of photoreceptor cells was increased. The apparent lack of photoreceptor cell type specificity was confirmed by our analysis of genetically mosaic facets, which indicated that no single photoreceptor cell, or subset of photoreceptor cells, was uniquely required to express eql Rather, eql appears to function in all photoreceptor cells, and possibly in all eye precursor cells. The distribution of photoreceptor cell numbers in w eql facets was consistent with the hypothesis that each photoreceptor cell was deleted independently of the others. The eql gene is located on the right arm of chromosome 2 at map location 2 ? 104.5 ± 0.7 and lies between the polytene chromosome bands 59D8 and 60A7. © 1995 Wiley-Liss, Inc.  相似文献   

19.
20.
Argonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that combines germline transgenic RNAi, GFP marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only after germ cell cyst formation. Stage-specific RNAi allows us to investigate the role of genes essential for germline cell survival, for example, nuclear RNA export or the SUMOylation pathway, in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit provided by the Vienna Drosophila Resource Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号