首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic protein 2 (BMP2) is a potent growth factor crucial for cell fate determination. It directs the differentiation of mesenchymal stem cells into osteoblasts, chondrocytes, adipocytes, and myocytes. Initiation of BMP2 signaling pathways occurs at the cell surface through type I and type II serine/threonine kinases housed in specific membrane domains such as caveolae enriched in the caveolin-1 beta isoform (CAV1β, caveolae) and clathrin-coated pits (CCPs). In order for BMP2 to initiate Smad signaling it must bind to its receptors on the plasma membrane resulting in the phosphorylation of the BMP type Ia receptor (BMPRIa) followed by activation of Smad signaling. The current model suggests that the canonical BMP signaling pathway, Smad, occurs in CCPs. However, several recent studies suggested Smad signaling may occur outside of CCPs. Here, we determined; (i) The location of BMP2 binding to receptors localized in caveolae, CCPs, or outside of these domains using AFM and confocal microscopy. (ii) The location of phosphorylation of BMPRIa on the plasma membrane using membrane fractionation, and (iii) the effect of down regulation of caveolae on Smad signaling. Our data indicate that BMP2 binds with highest force to BMP receptors (BMPRs) localized in caveolae. BMPRIa is phosphorylated in caveolae and the disruption of caveolae-inhibited Smad signaling in the presence of BMP2. This suggests caveolae are necessary for the initiation of Smad signaling. We propose an extension of the current model of BMP2 signaling, in which the initiation of Smad signaling is mediated by BMPRs in caveolae.  相似文献   

2.
Bone morphogenetic proteins (BMPs) are pleiotrophic growth factors that influence diverse processes such as skeletal development, hematopoiesis, and neurogenesis. They play crucial roles in diseases such as pulmonary arterial hypertension (PAH). In PAH, mutants of the BMP type II receptors (BMPR2) were detected, and their functions were impaired during BMP signaling. It is thought that expression levels of these receptors determine the fate of BMP signaling, with low levels of expression leading to decreased Smad activation in PAH. However, our studies demonstrate, for the first time, that the localization of receptors on the plasma membrane, in this case BMPR2, was misdirected. Three BMPR2 mutants, D485G, N519K, and R899X, which are known to be involved in PAH, were chosen as our model system. Our results show that all three BMPR2 mutants decreased BMP-dependent Smad phosphorylation and Smad signaling. Although the three mutants reached the cell membrane and their expression was lower than that of BMPR2, they formed smaller clusters and associated differently with membrane domains, such as caveolae and clathrin-coated pits. The disruption of these domains restored the Smad signaling of D485G and N519K to the level of wild-type BMPR2, showing that these mutants were trapped in the domains, rather than just expressed at a lower level on the surface. Therefore, new treatment options for PAH should also target receptor localization, rather than just expression level.  相似文献   

3.
Bone morphogenetic proteins (BMPs) play a crucial role during embryonic development and regulate processes as diverse as neurogenesis, skeletal formation, and hematopoesis. They signal through a hetero-oligomer complex of BMP receptors. Binding of the ligand to the receptors activates several pathways, including Smad and p38. BMP signaling is controlled in the extracellular space, the plasma membrane, and the intracellular space; however, the mechanism of receptor signaling at the plasma membrane and proteins that regulate this process still need to be identified. The experiments presented here identify the protein kinase casein kinase II (CK2) as a BMP receptor type Ia (BRIa) interacting protein. Fluorescence resonance energy transfer revealed that this interaction occurs at the plasma membrane. BMP2 stimulation of C2C12 cells leads to the release of CK2 from BRIa. Blocking this interaction with specific peptides that inhibit the binding sites for CK2 on BRIa demonstrated a redistribution of BRIa on the plasma membrane. Signaling was initiated once CK2 was released from BRIa, leading to the mineralization of C2C12 cells. These data suggest that CK2 is a negative regulator of BMP signaling and osteoblast differentiation.  相似文献   

4.
Bone morphogenetic protein 2 (BMP2) is a growth factor that initiates osteoblast differentiation. Recent studies show that BMP2 signaling regulates bone mineral density (BMD). BMP2 interacts with BMP receptor type Ia (BMPRIa) and type II receptor leading to the activation of the Smad signaling pathway. BMPRIa must shuttle between distinct plasma membrane domains, enriched of Caveolin‐1 alpha and Caveolin‐1 beta isoforms, and receptor activation occurs in these domains. Yet it remains unknown whether the molecular mechanism that regulates BMP2 signaling is driving mineralization and BMD. Therefore, the B6.C3H‐1‐12 congenic mouse model with increased BMD and osteoblast mineralization was utilized in this study. Using the family image correlation spectroscopy, we determined if BMP2 led to a significant re‐localization of BMPRIa to caveolae of the alpha/beta isoforms in bone marrow stromal cells (BMSCs) isolated from B6.C3H‐1‐12 mice compared to the C57BL/6J mice, which served as controls. The control, C57BL/6J mice, was selected due to only 4 Mb of chromosome 1 from the C3H/HeJ mouse was backcrossed to a C57BL/6J background. Using reporter gene assays, the B6.C3H‐1‐12 BMSCs responded to BMP2 with increased Smad activation. Furthermore, disrupting caveolae reduced the BMP2‐induced Smad signaling in BMSCs isolated from B6.C3H‐1‐12 and C57BL/6J. This study suggests for the first time a regulatory mechanism of BMPRIa signaling at the plasma membrane of BMSCs that (i) associated with genetic differences in the distal Chromosome 1 segment carried by the B6.C3H‐1‐12 congenic and (ii) contributes to increase BMD of the B6.C3H‐1‐12 compared to the C57BL/6J control mice. J. Cell. Physiol. 227: 2870–2879, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
6.
Localization of the insulin receptor in caveolae of adipocyte plasma membrane.   总被引:15,自引:0,他引:15  
The insulin receptor is a transmembrane protein of the plasma membrane, where it recognizes extracellular insulin and transmits signals into the cellular signaling network. We report that insulin receptors are localized and signal in caveolae microdomains of adipocyte plasma membrane. Immunogold electron microscopy and immunofluorescence microscopy show that insulin receptors are restricted to caveolae and are colocalized with caveolin over the plasma membrane. Insulin receptor was enriched in a caveolae-enriched fraction of plasma membrane. By extraction with beta-cyclodextrin or destruction with cholesterol oxidase, cholesterol reduction attenuated insulin receptor signaling to protein phosphorylation or glucose transport. Insulin signaling was regained by spontaneous recovery or by exogenous replenishment of cholesterol. beta-Cyclodextrin treatment caused a nearly complete annihilation of caveolae invaginations as examined by electron microscopy. This suggests that the receptor is dependent on the caveolae environment for signaling. Insulin stimulation of cells prior to isolation of caveolae or insulin stimulation of the isolated caveolae fraction increased tyrosine phosphorylation of the insulin receptor in caveolae, demonstrating that insulin receptors in caveolae are functional. Our results indicate that insulin receptors are localized to caveolae in the plasma membrane of adipocytes, are signaling in caveolae, and are dependent on caveolae for signaling.  相似文献   

7.
Signaling by bone morphogenetic protein (BMP) receptors is regulated at multiple levels in order to ensure proper interpretation of BMP stimuli in different cellular settings. As with other signaling receptors, regulation of the amount of exposed and signaling-competent BMP receptors at the plasma-membrane is predicted to be a key mechanism in governing their signaling output. Currently, the endocytosis of BMP receptors is thought to resemble that of the structurally related transforming growth factor-β (TGF-β) receptors, as BMP receptors are constitutively internalized (independently of ligand binding), with moderate kinetics, and mostly via clathrin-mediated endocytosis. Also similar to TGF-β receptors, BMP receptors are able to signal from the plasma membrane, while internalization to endosomes may have a signal modulating effect. When at the plasma membrane, BMP receptors localize to different membrane domains including cholesterol rich domains and caveolae, suggesting a complex interplay between membrane distribution and internalization. An additional layer of complexity stems from the putative regulatory influence on the signaling and trafficking of BMP receptors exerted by ligand traps and/or co-receptors. Furthermore, the trafficking and signaling of BMP receptors are subject to alterations in cellular context. For example, genetic diseases involving changes in the expression of auxiliary factors of endocytic pathways hamper retrograde BMP signals in neurons, and perturb the regulation of synapse formation. This review summarizes current understanding of the trafficking of BMP receptors and discusses the role of trafficking in regulation of BMP signals.  相似文献   

8.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily and regulate the formation of cartilage and bone tissues as well as other key events during development. TGF-beta superfamily signaling is mediated intracellularly by Smad proteins, some of which can translocate into the cell nucleus and influence gene expression. Although much progress has been made in understanding how TGF-beta superfamily signaling regulates expression of target genes, little formal proof has been presented regarding the intracellular distribution of the Smad proteins before their entry into the nucleus. In the literature, non-nuclear Smad proteins are generally referred to as cytoplasmic. Using confocal microscopy, we here show for the first time that immunofluorescent labeling of Smad5, one of the Smad proteins associated with BMP signaling, colocalizes with the mitochondrion-specific probe MitoTracker, demonstrating a mitochondrial distribution of Smad5 in non-stimulated chondroprogenitor cells.  相似文献   

9.
DRAGON, a bone morphogenetic protein co-receptor   总被引:5,自引:0,他引:5  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)beta superfamily of ligands that regulate many crucial aspects of embryonic development and organogenesis. Unlike other TGFbeta ligands, co-receptors for BMP ligands have not been described. Here we show that DRAGON, a glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, which is expressed early in the developing nervous system, enhances BMP but not TGFbeta signaling. DRAGON binds directly to BMP2 and BMP4 but not to BMP7 or other TGFbeta ligands. The enhancing action of DRAGON on BMP signaling is also reduced by administration of Noggin, a soluble BMP antagonist, indicating that the action of DRAGON is ligand-dependent. DRAGON associates directly with BMP type I (ALK2, ALK3, and ALK6) and type II (ActRII and ActRIIB) receptors, and its signaling is reduced by dominant negative Smad1 and ALK3 or -6 receptors. In the Xenopus embryo, DRAGON both reduces the threshold of the ability of Smad1 to induce mesodermal and endodermal markers and alters neuronal and neural crest patterning. The direct interaction of DRAGON with BMP ligands and receptors indicates that it is a BMP co-receptor that potentiates BMP signaling.  相似文献   

10.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

11.
Signaling at the plasma membrane receptors is generally terminated by some form of feedback regulation, such as endocytosis and/or degradation of the receptors. BMP-Smad1 signaling can also be attenuated by BMP-induced expression of the inhibitory Smads, which are negative regulators of Smad1 transactivation activity and/or BMP antagonists. Here, we report on a novel Smad1 regulation mechanism that occurs in response to the blockade of BMP activity. Lowering the serum levels or antagonizing BMPs with noggin led to upregulation of Smad1 at the protein level in several cell lines, but not to upregulation of Smad5, Smad8 or Smad2/3. The Smad1 upregulation occurs at the level of protein stabilization. Upregulated Smad1 was relocalized to the perinuclear region. These alterations seem to affect the dynamics and amplitude of BMP2-induced Smad1 reactivation. Our findings indicate that depleting or antagonizing BMPs leads to Smad1 stabilization and relocalization, thus revealing an unexpected regulatory mechanism for BMP-Smad1 signaling.  相似文献   

12.
Bone morphogenetic proteins (BMPs) regulate many processes in the embryo, including cell type specification, patterning, apoptosis, and epithelial-mesenchymal interaction. They also act in soft and hard tissues in adult life. Their signals are transduced from the plasma membrane to the nucleus through a limited number of Smad proteins. The list of Smad-interacting proteins is however growing and it is clear that these partners determine the outcome of the signal. We summarize the present status in BMP/Smad signaling, with emphasis on recently identified Smad partners and how these proteins may cooperate in the regulation of the expression of BMP target genes.  相似文献   

13.
Tob inhibits bone morphogenetic protein (BMP) signaling by interacting with receptor-regulated Smads in osteoblasts. Here we provide evidence that Tob also interacts with the inhibitory Smads 6 and 7. A yeast two-hybrid screen identified Smad6 as a protein interacting with Tob. Tob co-localizes with Smad6 at the plasma membrane and enhances the interaction between Smad6 and activated BMP type I receptors. Furthermore, we have isolated Xenopus Tob2, and show that it cooperates with Smad6 in inducing secondary axes when expressed in early Xenopus embryos. Finally, Tob and Tob2 cooperate with Smad6 to inhibit endogenous BMP signaling in Xenopus embryonic explants and in cultured mammalian cells. Our results provide both in vitro and in vivo evidence that Tob inhibits endogenous BMP signaling by facilitating inhibitory Smad functions.  相似文献   

14.
15.
Caveolae are specialized membrane microdomains that are found on the plasma membrane of most cells. Recent studies indicate that a variety of signaling molecules are highly organized in caveolae, where their interactions initiate specific signaling cascades. Molecules enriched in this membrane include G protein-coupled receptors, heterotrimeric GTP binding proteins, IP3 receptor-like protein, Ca2+ ATPase, eNOS, and several PKC isoforms. Direct measurements of calcium changes in endothelial cells suggest that caveolae may be sites that regulate intracellular Ca2+ concentration and Ca2+ dependent signal transduction. This review will focus on the role of caveolae in controlling the spatial and temporal pattern of intracellular Ca2+ signaling.  相似文献   

16.
Primary human fibroblasts have a finite replicative lifespan in culture that culminates in a unique state of growth arrest, termed senescence that is accompanied by distinct morphological and biochemical alterations. Senescent cell responses to extracellular stimuli are believed to be altered at a point after receptors are bound by ligand, leading to improper integration of the signals which initiate DNA replication. In this study we demonstrate that one of the key organizing membrane microdomains for receptor signaling, caveolae, are absent in senescent cells. A comparison of young and senescent cells indicated that senescent cells contained a higher total amount of caveolins 1 and 2 but had significantly less of both proteins in the caveolar fraction. Additionally, caveolar fractions from senescent cells completely lacked the tyrosine-kinase activity associated with functional caveolae. Furthermore, old cells had little caveolar protein exposed to the outer plasma membrane as estimated by using an in vivo biotinylation assay and no detectable caveolin 1 on the cell surface when processed for immunofluoresence and confocal microscopy. Together, these data suggest that a fundamental loss of signal integration at the plasma membrane of senescent cells is due to the loss of signaling competent caveolae.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号