首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exposure to non-thermal microwave electromagnetic field (MW-EMF) at 1.95 MHz, a frequency used in mobile communication, affects the refolding kinetics of eukaryotic proteins (Mancinelli et al., 2004). On these basis we have evaluated the in vivo effect of MW-EMF in human epidermoid cancer KB cells. We have found that MW-EMF induces time-dependent apoptosis (45% after 3 h) that is paralleled by an about 2.5-fold decrease of the expression of ras and Raf-1 and of the activity of ras and Erk-1/2. Although also the expression of Akt was reduced its activity was unchanged likely as a consequence of the increased expression of its upstream activator PI3K. In the same experimental conditions an about 2.5-fold increase of the ubiquitination of ras and Raf-1 was also found and the addition for 12 h of proteasome inhibitor lactacystin at 10 microM caused an accumulation of the ubiquitinated isoforms of ras and Raf-1 and counteracted the effects of MW-EMF on ras and Raf-1 expression suggesting an increased proteasome-dependent degradation induced by MW-EMF. The exposure of KB cells to MW-EMF induced a differential activation of stress-dependent pathway with an increase of JNK-1 activity and HSP70 and 27 expression and with a reduction of p38 kinase activity and HSP90 expression. The overexpression of HSP90 induced by transfection of KB cells with a plasmid encoding for the factor completely antagonized the apoptosis and the inactivation of the ras --> Erk-dependent survival signal induced by MW-EMF. Conversely, the inhibition of Erk activity induced by 12 h exposure to 10 mM Mek-1 inhibitor U0126 antagonized the effects induced by HSP90 transfection on apoptosis caused by MW-EMF. In conclusion, these results demonstrate for the first time that MW-EMF induces apoptosis through the inactivation of the ras --> Erk survival signaling due to enhanced degradation of ras and Raf-1 determined by decreased expression of HSP90 and the consequent increase of proteasome dependent degradation.  相似文献   

2.
Heat shock protein (HSP) 20, one of the low‐molecular weight HSPs, is known to have versatile functions, such as vasorelaxation. However, its precise role in cancer proliferation remains to be elucidated. While HSP20 is constitutively expressed in various tissues including the liver, we have previously reported that HSP20 protein levels in human hepatocellular carcinoma (HCC) cells inversely correlate with the progression of HCC. In this study, we investigated the role of HSP20 in HCC proliferation. The activities of extracellular signal‐regulated kinase (ERK), c‐jun N‐terminal kinase (JNK), and AKT were negatively correlated with the HSP20 protein levels in human HCC tissues. Since HSP20 proteins were hardly detected in HCC‐derived cell lines, the effects of HSP20 expression were evaluated using human HCC‐derived HuH7 cells that were stably transfected with wild‐type human HSP20 (HSP20 overexpressing cells). In HSP20 overexpressing cells, cell proliferation was retarded, and the activation of the mitogen‐activated protein kinases (MAPKs) signaling pathways, including the ERK and JNK, and AKT pathways, as well as cyclin D1 accumulation induced by either transforming growth factor‐α (TGFα) or hepatocyte growth factor, were significantly suppressed compared with the empty vector‐transfected cells (control cells). Taken together, our findings strongly suggest that HSP20 suppresses the growth of HCC cells via the MAPKs and AKT signaling pathways, thus suggesting that the HSP20 could be a new therapeutic target for HCC. J. Cell. Biochem. 112: 3430–3439, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
4.
It was previously demonstrated that bovine serum amine-oxidase (BSAO) and SPM (SPM) addition to cancer cells induces cell growth inhibition and over-run the multi-drug resistance (MDR) phenotype through the oxidative stress caused by polyamine metabolites. In this study, it is reported that BSAO/SPM enzymatic system antagonizes the survival pathway induced by either docetaxel (DTX) or interferon alpha (IFNalpha) in human epidermoid cancer KB cells. The combination of BSAO/SPM with either DTX or IFNalpha had a synergistic effect on cell growth inhibition through apoptosis in both human epidermoid KB and breast cancer MCF-7 cell lines. The effects of the BSAO/SPM-DTX combination on apoptosis were caspase 3 and 9-dependent and were paralleled by the enhancement of intracellular O(2-), nitric oxide levels and of lipo-oxidation. The scavenger moiety N-acetyl-cysteine antagonized the effects on apoptosis and cell growth inhibition induced by the combination suggesting a role of the oxidative products of SPM. These effects occurred together with a decrease of the physiological scavenger MnSOD and an increase of both p38 kinase activity and DNA damage. The results suggest that DTX and IFNalpha could sensitize tumour cells to the oxidative stress and apoptosis induced by BSAO/SPM through the induction of a survival ras-dependent pathway and the consequent elevation of the intracellular polyamine pool. These data allow the design of new therapeutic strategy based on the use of this combination in human neoplasms.  相似文献   

5.
6.
The mycotoxin CTN (citrinin), a natural contaminant in foodstuffs and animal feeds, has cytotoxic and genotoxic effects on various mammalian cells. CTN is known to cause cell injury, including apoptosis, but the precise regulatory mechanisms of CTN action, particularly in stem cells and embryos, are currently unclear. In the present paper, I report that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments in embryonic stem cells (ESC-B5) showed that CTN induces apoptosis via ROS (reactive oxygen species) generation, increased Bax/Bcl-2 ratio, loss of MMP (mitochondrial membrane potential), induction of cytochrome c release, and activation of caspase 3. In this model, CTN triggers cell death via inactivation of the HSP90 [a 90 kDa isoform of the HSP (heat-shock protein) family proteins]/multichaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes, such as the Ras-->ERK (extracellular-signal-regulated kinase) signal transduction pathway. In addition, CTN causes early developmental injury in mouse ESCs and blastocysts in vitro. Lastly, using an in vivo mouse model, I show that consumption of drinking water containing 10 muM CTN results in blastocyst apoptosis and early embryonic developmental injury. Collectively, these findings show for the first time that CTN induces ROS and mitochondria-dependent apoptotic processes, inhibits Ras-->ERK survival signalling via inactivation of the HSP90/multichaperone complex, and causes developmental injury in vivo.  相似文献   

7.
Endothelial nitric-oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. We recently used purified proteins to characterize the mechanisms by which heat shock protein 90 (HSP90) increases eNOS activity at low and high Ca2+ levels (Takahashi, S. and Mendelsohn, M. E. (2003) J. Biol. Chem. 278, 9339-9344). Here we extend these studies to explore interactions between HSP90, Akt, and eNOS. In studies with purified proteins, HSP90 increased the initial rate and maximal extent of Akt-mediated eNOS phosphorylation and activation at low Ca2+ levels. Akt was not observed in the eNOS complex in the absence of HSP90, but both active and inactive Akt associated with eNOS in the presence of HSP90. Direct binding of Akt to HSP90 was observed even in the absence of eNOS. HSP90 also facilitated CaM binding to eNOS irrespective of Akt presence. Geldanamycin (GA) disrupted HSP90-eNOS binding, reduced HSP90-stimulated CaM binding, and blocked both recruitment of Akt to the eNOS complex and phosphorylation of eNOS at Ser-1179. Akt phosphorylated only CaM-bound eNOS, in an HSP90-independent manner. HSP90 and active Akt together increased eNOS activity synergistically, which was reversed by GA. In bovine aortic endothelial cells (BAECs), the effects of vascular endothelial growth factor (VEGF) and insulin on eNOS-HSP90-Akt complex formation and eNOS activation were compared. BAPTA-AM inhibited VEGF- but not insulin-induced eNOS-HSP90-Akt complex formation and eNOS phosphorylation. Insulin caused rapid, transient increase in eNOS activity correlated temporally with the formation of eNOS-HSP90-Akt complex. GA prevented insulin-induced association of HSP90, Akt and CaM with eNOS and inhibited eNOS activation in BAECs. Both platelet-derived growth factor (PDGF) and insulin induced activation of Akt in BAECs, but only insulin caused HSP90-Akt-eNOS association and eNOS phosphorylation. These results demonstrate that HSP90 and Akt synergistically activate eNOS and suggest that this synergy contributes to Ca2+-independent eNOS activation in response to insulin.  相似文献   

8.
We previously established a role for HSP27 as a predictive marker for therapeutic response towards gemcitabine in pancreatic cancer. Here, we investigate the underlying mechanisms of HSP27‐mediated gemcitabine sensitivity. Utilizing a pancreatic cancer cell model with stable HSP27 overexpression, cell cycle arrest and apoptosis induction were analysed by flow cytometry, nuclear staining, immunoblotting and mitochondrial staining. Drug sensitivity studies were performed by proliferation assays. Hyperthermia was simulated using mild heat shock at 41.8°C. Upon gemcitabine treatment, HSP27‐overexpressing cells displayed an early S‐phase arrest subsequently followed by a strongly increased sub‐G1 fraction. Apoptosis was characterized by PARP‐, CASPASE 3‐, CASPASE 8‐, CASPASE 9‐ and BIM‐ activation along with a mitochondrial membrane potential loss. It was reversible through chemical caspase inhibition. Importantly, gemcitabine sensitivity and PARP cleavage were also elicited by heat shock‐induced HSP27 overexpression, although to a smaller extent, in a panel of pancreatic cancer cell lines. Finally, HSP27‐overexpressing pancreatic cancer cells displayed an increased sensitivity also towards death receptor‐targeting agents, suggesting another pro‐apoptotic role of HSP27 along the extrinsic apoptosis pathway. Taken together, in contrast to the well‐established anti‐apoptotic properties of HSP27 in cancer, our study reveals novel pro‐apoptotic functions of HSP27—mediated through both the intrinsic and the extrinsic apoptotic pathways—at least in pancreatic cancer cells. HSP27 could represent a predictive marker of therapeutic response towards specific drug classes in pancreatic cancer and provides a novel molecular rationale for current clinical trials applying the combination of gemcitabine with regional hyperthermia in pancreatic cancer patients.  相似文献   

9.
10.
Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.  相似文献   

11.
Lu C  Chen D  Zhang Z  Fang F  Wu Y  Luo L  Yin Z 《Molecules and cells》2007,24(2):210-214
The 90-kDa heat shock protein (HSP90) normally functions as a molecular chaperone participating in folding and stabilizing newly synthesized proteins, and refolding denatured proteins. The HSP90 inhibitor geldanamycin (GA) occupies the ATP/ADP binding pocket of HSP90 so inhibits its chaperone activity and causes subsequent degradation of HSP90 client proteins by proteasomes. Here we show that GA reduces the level of endogenous c-Jun in human embryonic kidney 293 (HEK293) cells in a time and dose dependent manner, and that this decrease can be reversed by transfection of HSP90 plasmids. Transfection of HSP90 plasmids in the absence of GA increases the level of endogenous c-Jun protein, but has no obvious affect on c-Jun mRNA levels. We also showed that HSP90 prolongs the half-life of c-Jun by stabilizing the protein; the proteasome inhibitor N-benzoyloxy-carbonyl (Z)-Leu-Leu-leucinal (MG132) blocks the degradation of c-Jun promoted by GA. Transfection of HSP90 plasmids did not obviously alter phosphorylation of c-Jun, and a Jun-2 luciferase activity assay indicated that over-expression of HSP90 elevated the total protein activity of c-Jun in HEK293 cells. All our evidence indicates that HSP90 stabilizes c-Jun protein, and so increases the total activity of c-Jun in HEK293 cells.  相似文献   

12.
Both geldanamycin (GA) and radicicol (RA) are HSP90 binding agents that possess antitumour activities. Although the in vitro data indicated that the inhibitory constant of RA is much bigger than that of GA, the in vivo data on drug efficacy might reveal different results. We have recently shown that treatment with GA induces a heat-shock response and that calcium mobilization may be involved in the process. By using induction of HSP70 as the endpoint assay, we found changes in upstream signaling mediators, including HSF1 and calcium mobilization, as well as possible involvement of protein kinase in human non-small cell lung cancer H460 cells treated with GA and RA. Our results demonstrated that calcium mobilization, a calcium dependent and H7-sensitive protein kinase, along with HSF1 activation by phosphorylation, are all involved in the HSP70 induction process triggered by the drugs. However, only GA, but not RA, can provoke a rapid calcium mobilization and thereby result in an instant induction of HSP70. Furthermore, the rapid calcium influx, followed by instant HSP induction, could be achieved in GA- or RA-treated cells placed in a medium containing excessive calcium while the response was completely abolished in cells depleted of calcium. Taken together, our findings suggest that differential calcium signaling may account for the differential induction of HSP and the action of GA and RA.  相似文献   

13.
Rab7 plays an important role in regulating endocytic traffic. In view of an emerging role of membrane traffic in signaling and diseases, we have examined the possible role of Rab7 in oncogenesis. The role of Rab7 was investigated using shRNA‐mediated knockdown in A431 and MCF7 cancer cells. To our surprise, Rab7 knockdown effectively suppressed anchorage‐independent growth of cancer cells in soft agar. Anoikis (matrix‐detachment triggered apoptosis) was enhanced, while the level of phosphorylated (active) Akt (which is a key survival factor) was significantly reduced. Also intriguing was the observation that EGFR and Her2 levels were significantly reduced when Rab7 was knocked‐down. More robust reduction of EGFR and Her2 levels was observed when knocked‐down cells were treated with HSP90 inhibitor geldanamycin (GA). Low concentration of GA (50–100 nm)‐induced apoptosis of the Rab7 knocked‐down cells but not control cells, suggesting that Rab7 and HSP90 together contribute to the optimal stability of EGFR and Her2 as well as to protect cancer cells from apoptosis. Rab7 seems to protect EGFR and Her2 from proteosome‐mediated degradation. These results suggest that Rab7 is likely involved in protecting EGFR and Her2 from being degraded by the proteosome and in maintaining optimal Akt survival signal (especially during cell detachment or when HSP90 is inhibited). Rab7 is potentially a novel target for combinatory therapy with Hsp90 inhibitors. J. Cell. Physiol. 227: 2788–2797, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Recent studies have demonstrated that diphtheria toxin (DTX) also mediates target cell lysis, and the mechanism of cytotoxicity has many features similar to those of cytotoxicity mediated by TNF-alpha. Thus, we hypothesized that DTX and TNF-alpha, used in combination, may result in either additive or synergistic cytotoxic activity. This was examined on three human ovarian carcinoma cell lines chosen for their differing sensitivities to TNF-alpha and DTX, i.e., 222, which is sensitive to both TNF-alpha and DTX, 222TR, a TNF-alpha-resistant DTX-sensitive variant of 222, and SKOV-3, which is resistant to both DTX and TNF-alpha. The simultaneous use of DTX and TNF-alpha at suboptimal concentrations resulted in synergistic cytotoxic activity against all three lines tested, thus overcoming the TNF-alpha resistance of 222TR and the double resistance of SKOV-3. DNA fragmentation was observed in all three lines treated with DTX and TNF-alpha and occurred as early as 4 h after treatment. Cycloheximide, actinomycin D, or emetine, at concentrations causing greater than 90% protein synthesis inhibition, did not result in cytotoxicity alone or synergy with TNF-alpha, suggesting that synergy by DTX was not due to its ability to inhibit protein synthesis. The use of energy poisons and pH conditions that inhibit DTX-mediated cytotoxicity resulted in the abrogation of synergy. These findings show that the two cytotoxic agents TNF-alpha and DTX, when used at suboptimal concentrations, synergize in their cytotoxic activity against sensitive and resistant cell lines. Because the SKOV-3 cell line used here is also resistant to chemotherapeutic drugs, combination treatment with DTX and TNF-alpha may be beneficial in overcoming drug resistance.  相似文献   

15.
16.
Interleukin-6 (IL-6) initiates STAT3 signaling in plasma membrane rafts with the subsequent transit of Tyr-phosphorylated STAT3 (PY-STAT3) through the cytoplasmic compartment to the nucleus in association with accessory proteins. We initially identified caveolin-1 (cav-1) as a candidate STAT3-associated accessory protein due to its co-localization with STAT3 and PY-STAT3 in flotation raft fractions, and heat shock protein 90 (HSP90) due to its inclusion in cytosolic STAT3-containing 200-400-kDa complexes. Subsequent immunomagnetic bead pullout assays showed that STAT3, PY-STAT3, cav-1, and HSP90 interacted in plasma membrane and cytoplasmic complexes derived from uninduced and stimulated Hep3B cells. This was a general property of STAT3 in that these interactions were also observed in alveolar epithelial type II-like cells, lung fibroblasts, and pulmonary arterial endothelial cells. Exposure of Hep3B cells to the raft disrupter methyl-beta-cyclodextrin for 1-10 min followed by IL-6 stimulation for 15 min preferentially inhibited the appearance of PY-STAT3 in the cav-1-enriched sedimentable cytoplasmic fraction, suggesting that these complexes may represent a trafficking intermediate immediately downstream from the raft. Because IL-6 is known to function in the body in the context of fever, the possibility that HSP90 may help preserve IL-6-induced STAT3 signaling at elevated temperature was investigated. Geldanamycin, an HSP90 inhibitor, markedly inhibited IL-6-stimulated STAT3 signaling in Hep3B hepatocytes cultured overnight at 39.5 degrees C as evaluated by DNA-shift assays, trafficking of PY-STAT3 to the nucleus, cross-precipitation of HSP90 by anti-STAT3 polyclonal antibody, and reporter/luciferase construct experiments. Taken together, the data show that IL-6/raft/STAT3 signaling is a chaperoned pathway that involves cav-1 and HSP90 as accessory proteins and suggest a mechanism for the preservation of this signaling during fever.  相似文献   

17.
Lee CH  Hong HM  Chang YY  Chang WW 《Biochimie》2012,94(6):1382-1389
Heat shock protein (Hsp) 90 is an ATP-dependent chaperone and its expression has been reported to be associated with poor prognosis of breast cancer. Cancer stem cells (CSCs) are particular subtypes of cells in cancer which have been demonstrated to be important to tumor initiation, drug resistance and metastasis. In breast cancer, breast CSCs (BCSCs) are identified as CD24-CD44 + cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH+). Although the clinical trials of Hsp90 inhibitors in breast cancer therapy are ongoing, the BCSC targeting effect of them remains unclear. In the present study, we discovered that the expression of Hsp90α was increased in ALDH + human breast cancer cells. Geldanamycin (GA), a Hsp90 inhibitor, could suppress ALDH + breast cancer cells in a dose dependent manner. We are interesting in the insufficiently inhibitory effect of low dose GA treatment. It was correlated with the upregulation of Hsp27 and Hsp70. By co-treatment with HSP inhibitors, quercetin or KNK437 potentiated BCSCs, which determined with ALDH+ population or mammosphere cells, toward GA inhibition, as well as anti-proliferation and anti-migration effects of GA. With siRNA mediated gene silencing, we found that knockdown of Hsp27 could mimic the effect of HSP inhibitors to potentiate the BCSC targeting effect of GA. In conclusion, combination of HSP inhibitors with Hsp90 inhibitors could serve as a potential solution to prevent the drug resistance and avoid the toxicity of high dose of Hsp90 inhibitors in clinical application. Furthermore, Hsp27 may play a role in chemoresistant character of BCSCs.  相似文献   

18.
The 90-kDa heat shock proteins (HSP90) are important in the regulation of numerous intracellular processes in eukaryotic cells. In particular, HSP90 has been shown to be involved in the control of the cellular differentiation of the protozoan parasite Leishmania donovani. We investigated the role of HSP90 in the related parasite Trypanosoma cruzi by inhibiting its function using geldanamycin (GA). GA induced a dose-dependent increase in heat shock protein levels and a dose-dependent arrest of proliferation. Epimastigotes were arrested in G1 phase of the cell cycle, but no stage differentiation occurred. Blood form trypomastigotes showed conversion towards spheromastigote-like forms when they were cultivated with GA, but differentiation into epimastigotes was permanently blocked. We conclude that, similar to leishmanial HSP90, functional HSP90 is essential for cell division in T. cruzi and serves as a feedback inhibitor in the cellular stress response. In contrast to L. donovani cells, however, T. cruzi cells treated with GA do not begin to differentiate into relevant life cycle stages.  相似文献   

19.
HSP90, a major molecular chaperone, plays an essential role in the maintenance of several signaling molecules. Inhibition of HSP90 by inhibitors such as 17-allylamino-demethoxy-geldanamycin (17AAG) is known to induce apoptosis in various cancer cells by decreasing the activation or expression of pro-survival molecules such as protein kinase B (Akt). While we did not observe either decrease in expression or activation of pro-survival signaling molecules in human breast cancer cells upon inhibiting HSP90 with 17AAG, we did observe a decrease in cell motility of transformed cells, and cell motility and invasion of cancer cells. We found a significant decrease in the number of filopodia and lamellipodia, and in the F-actin bundles upon HSP90 inhibition. Our results show no change in the active forms or total levels of FAK and Pax, or in the activation of Rac-1 and Cdc-42; however increased levels of HSP90, HSP90α and HSP70 were observed upon HSP90 inhibition. Co-immuno-precipitation of HSP90 reveals interaction of HSP90 with G-actin, which increases upon HSP90 inhibition. FRET results show a significant decrease in interaction between actin monomers, leading to decreased actin polymerization upon HSP90 inhibition. We observed a decrease in the invasion of human breast cancer cells in the matrigel assay upon HSP90 inhibition. Over-expression of αB-crystallin, known to be involved in actin dynamics, did not abrogate the effect of HSP90 inhibition. Our work provides the molecular mechanism by which HSP90 inhibition delays cell migration and should be useful in developing cancer treatment strategies with known anti-cancer drugs such as cisplatin in combination with HSP90 inhibitors.  相似文献   

20.
Although natural killer (NK) cells are often described as first line defence against infected or malignant cells which act without the need of prior activation, it is known now that the NK cell activity is tightly regulated by other cells and soluble factors. We show here that the stress‐inducible heat shock protein (HSP) 70 activates human NK cells to kill target cells expressing major histocompatibility complex class I chain‐related molecule A (MICA) in a natural killer group 2 member D (NKG2D‐) dependent manner. The HSP70‐derived peptide TKD (TKDNNLLGRFELSG) was able to replace the full‐length HSP70 and to exert the same function. Interestingly, the expression of the cytotoxic effector protease granzyme B in NK cells was increased after TKD stimulation. When MICA and MICB expression was induced in human tumour cells by a histone deacetylase inhibitor and NK cells were activated by HSP70 or TKD, both treatments jointly improved the killing of the tumour cells. Thus, the synergistic activity of two stress‐inducible immunological danger signals, HSP70 and MICA/B, leads to activation and enhanced cytotoxicity of human NK cells against tumour cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号