首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although impressive progress has been made toward developing empirically‐supported psychological treatments, the reality remains that a significant proportion of people with mental health problems do not receive these treatments. Finding ways to reduce this treatment gap is crucial. Since app‐supported smartphone interventions are touted as a possible solution, access to up‐to‐date guidance around the evidence base and clinical utility of these interventions is needed. We conducted a meta‐analysis of 66 randomized controlled trials of app‐supported smartphone interventions for mental health problems. Smartphone interventions significantly outperformed control conditions in improving depressive (g=0.28, n=54) and generalized anxiety (g=0.30, n=39) symptoms, stress levels (g=0.35, n=27), quality of life (g=0.35, n=43), general psychiatric distress (g=0.40, n=12), social anxiety symptoms (g=0.58, n=6), and positive affect (g=0.44, n=6), with most effects being robust even after adjusting for various possible biasing factors (type of control condition, risk of bias rating). Smartphone interventions conferred no significant benefit over control conditions on panic symptoms (g=–0.05, n=3), post‐traumatic stress symptoms (g=0.18, n=4), and negative affect (g=–0.08, n=5). Studies that delivered a cognitive behavior therapy (CBT)‐based app and offered professional guidance and reminders to engage produced larger effects on multiple outcomes. Smartphone interventions did not differ significantly from active interventions (face‐to‐face, computerized treatment), although the number of studies was low (n≤13). The efficacy of app‐supported smartphone interventions for common mental health problems was thus confirmed. Although mental health apps are not intended to replace professional clinical services, the present findings highlight the potential of apps to serve as a cost‐effective, easily accessible, and low intensity intervention for those who cannot receive standard psychological treatment.  相似文献   

2.
The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter‐ and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf‐IT, a new smartphone application for measuring leaf area and other trait‐related areas. Leaf‐IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well‐established, commercial software WinFOLIA using the Altman–Bland method. Area measurements of standardized objects show that Leaf‐IT measures area with high accuracy and precision. Area measurements with Leaf‐IT of real leaves are comparable to those of WinFOLIA. Leaf‐IT is an easy‐to‐use application running on a wide range of smartphones. That increases the portability and use of Leaf‐IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.  相似文献   

3.
Global positioning system (GPS) telemetry technology allows us to monitor and to map the details of animal movement, securing vast quantities of such data even for highly cryptic organisms. We envision an exciting synergy between animal ecology and GPS-based radiotelemetry, as for other examples of new technologies stimulating rapid conceptual advances, where research opportunities have been paralleled by technical and analytical challenges. Animal positions provide the elemental unit of movement paths and show where individuals interact with the ecosystems around them. We discuss how knowing where animals go can help scientists in their search for a mechanistic understanding of key concepts of animal ecology, including resource use, home range and dispersal, and population dynamics. It is probable that in the not-so-distant future, intense sampling of movements coupled with detailed information on habitat features at a variety of scales will allow us to represent an animal''s cognitive map of its environment, and the intimate relationship between behaviour and fitness. An extended use of these data over long periods of time and over large spatial scales can provide robust inferences for complex, multi-factorial phenomena, such as meta-analyses of the effects of climate change on animal behaviour and distribution.  相似文献   

4.
We develop a novel smartphone‐based spectral imaging otoscope for telemedicine and examine its capability for the mobile diagnosis of middle ear diseases. The device was applied to perform spectral imaging and analysis of an ear‐mimicking phantom and a normal and abnormal tympanic membrane for evaluation of its potential for the mobile diagnosis. Spectral classified images were obtained via online spectral analysis in a remote server. The phantom experimental results showed that it allowed us to distinguish four different fluids located behind a semitransparent membrane. Also, in the spectral classified images of normal ears (n = 3) and an ear with chronic otitis media (n = 1), the normal and abnormal regions in each ear could be quantitatively distinguished with high contrast. These preliminary results thus suggested that it might have the potentials for providing quantitative information for the mobile diagnosis of various middle ear diseases.  相似文献   

5.
The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, ‘An equilibrium theory of insular zoogeography’, was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re‐assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution – understanding ecosystem functioning, speciation and diversification – frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island‐based theory is continually being enriched, incorporating non‐equilibrium dynamics is identified as a major challenge for the future.  相似文献   

6.
7.
Microarrays in ecology and evolution: a preview   总被引:23,自引:0,他引:23  
  相似文献   

8.
9.
10.
Sex‐determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex‐determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature‐dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco‐evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs.  相似文献   

11.
Molecular markers have become a fundamental piece of modern biology’s toolkit. In the last decade, new genomic resources from model organisms and advances in DNA sequencing technology have altered the way that these tools are developed, alleviating the marker limitation that researchers previously faced and opening new areas of research for studies of non‐model organisms. This availability of markers is directly responsible for advances in several areas of research, including fine‐scaled estimation of population structure and demography, the inference of species phylogenies, and the examination of detailed selective pressures in non‐model organisms. This review summarizes methods for the development of large numbers of DNA markers in non‐model organisms, the challenges encountered when utilizing different methods, and new research applications resulting from these advances.  相似文献   

12.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   

13.
The origin of eusociality in the Hymenoptera is a question of major interest. Theory has tended to focus on genetic relatedness, but ecology can be just as important a determinant of whether eusociality evolves. Using the model of Fu et al. (2015), we show how ecological assumptions critically affect the conclusions drawn. Fu et al. inferred that eusociality rarely evolves because it faces a fundamental ‘risk‐return tradeoff’. The intuitive logic was that worker production represents an opportunity cost because it delays realising a reproductive payoff. However, making empirically justified assumptions that (1) workers take over egg‐laying following queen death and (2) productivity increases gradually with each additional worker, we find that the risk‐return tradeoff disappears. We then survey Hymenoptera with more specialised morphological castes, and show how the interaction between two common features of eusociality – saturating birth rates and group size‐dependent helping decisions – can determine whether eusociality outperforms other strategies.  相似文献   

14.
15.
  1. Point data obtained from real‐time location systems (RTLSs) can be processed into animal contact networks, describing instances of interaction between tracked individuals. Proximity‐based definitions of interanimal “contact,” however, may be inadequate for describing epidemiologically and sociologically relevant interactions involving body parts or other physical spaces relatively far from tracking devices. This weakness can be overcome by using polygons, rather than points, to represent tracked individuals and defining “contact” as polygon intersections.
  2. We present novel procedures for deriving polygons from RTLS point data while maintaining distances and orientations associated with individuals' relocation events. We demonstrate the versatility of this methodology for network modeling using two contact network creation examples, wherein we use this procedure to create (a) interanimal physical contact networks and (b) a visual contact network. Additionally, in creating our networks, we establish another procedure to adjust definitions of “contact” to account for RTLS positional accuracy, ensuring all true contacts are likely captured and represented in our networks.
  3. Using the methods described herein and the associated R package we have developed, called contact, researchers can derive polygons from RTLS points. Furthermore, we show that these polygons are highly versatile for contact network creation and can be used to answer a wide variety of epidemiological, ethological, and sociological research questions.
  4. By introducing these methodologies and providing the means to easily apply them through the contact R package, we hope to vastly improve network‐model realism and researchers' ability to draw inferences from RTLS data.
  相似文献   

16.
Individual specialization underpins the division of labour within ant societies, but only in a small minority do morphological specialists, or physical castes, exist in the workforce. The genetic conditions that allow such castes to evolve are well understood, but the ecological pressures that select for them are not. We provide compelling evidence that the task of transporting novel prey selected for an exaggerated transport caste, or 'submajor', in the army ant Eciton burchellii. This species is the only Eciton that preys upon large arthropods as well as ants, the ancestral prey type, and by comparing load-transport among Eciton species and within E. burchellii, we show that this mixed diet significantly constrains transport efficiency. Crucially, however, we also show that E. burchellii submajors are highly specialized on transporting non-ant prey, and we demonstrate experientially that it is specifically this prey type that constrains prey-transport efficiency. Our study also suggests that phylogenetic constraints associated with the Eciton lifestyle intensified selection for the exaggerated submajor of E. burchellii. Thus, we propose that a novel task may only select for a special caste when phylogenetic constraints preclude the evolution of alternative solutions. This identifies a new and potentially general scenario for the evolution of physical castes.  相似文献   

17.
Females that mate with multiple males (polyandry) may reduce the risk that their eggs are fertilized by a single unsuitable male. About 25 years ago it was hypothesized that bet‐hedging could function as a mechanism favoring the evolution of polyandry, but this idea is controversial because theory indicates that bet‐hedging via polyandry can compensate the costs of mating only in small populations. Nevertheless, populations are often spatially structured, and even in the absence of spatial structure, mate‐choice opportunity can be limited to a few potential partners. We examined the effectiveness of bet‐hedging in such situations with simulations carried out under two scenarios: (1) intrinsic male quality, with offspring survival determined by male phenotype (male's ability to generate viable offspring), and (2) genetic incompatibility (offspring fitness determined nonadditively by parental genotypes). We find higher fixation probabilities for a polyandrous strategy compared to a monandrous strategy if complete reproductive failure due to male effects or parental incompatibility is pervasive in the population. Our results also indicate that bet‐hedging polyandry can delay the extinction of small demes. Our results underscore the potential for bet‐hedging to provide benefits to polyandrous females and have valuable implications for conservation biology.  相似文献   

18.
  • The study of intraspecific seed packaging (i.e. seed size/number strategy) variation across different populations may allow better understanding of the ecological forces that drive seed evolution in plants. Juniperus thurifera (Cupressaceae) provides a good model to study this due to the existence of two subspecies differentiated by phenotypic traits, such as seed size and cone seediness (number of seeds inside a cone), across its range.
  • The aim of this study was to analyse seed packaging (seed mass and cone seediness) variation at different scales (subspecies, populations and individuals) and the relationship between cone and seed traits in European and African J. thurifera populations.
  • After opening more than 5300 cones and measuring 3600 seeds, we found that seed packaging traits followed different patterns of variation. Large‐scale effects (region and population) significantly contributed to cone seediness variance, while most of the seed mass variance occurred within individuals. Seed packaging differed between the two sides of the Mediterranean Sea, with African cones bearing fewer but larger seeds than the European ones. However, no differences in seed mass were found between populations when taking into account cone seediness. Larger cones contained more pulp and seeds and displayed a larger variation in individual seed mass.
  • We validated previous reports on the intraspecific differences in J. thurifera seed packaging, although both subspecies followed the same seed size/number trade‐off. The higher seediness and variation in seed mass found in larger cones reveals that the positive relationship between seed and cone sizes may not be straightforward.We hypothesise that the large variation of seed size found within cones and individuals in J. thurifera, but also in other fleshy‐fruited species, could represent a bet‐hedging strategy for dispersal.
  相似文献   

19.
In the face of rapid environmental and cultural change, long‐term ecological research (LTER) and social‐ecological research (LTSER) are more important than ever. LTER contributes disproportionately to ecology and policy, evidenced by the greater proportion of LTER in higher impact journals and the disproportionate representation of LTER in reports informing policymaking. Historical evidence has played a significant role in restoration projects and it will continue to guide restoration into the future, but its use is often hampered by lack of information, leading to considerable uncertainties. By facilitating the storage and retrieval of historical information, LTSER will prove valuable for future restoration.  相似文献   

20.
Ecologically mediated selection has increasingly become recognised as an important driver of speciation. The correlation between neutral genetic differentiation and environmental or phenotypic divergence among populations, to which we collectively refer to as isolation‐by‐ecology (IBE), is an indicator of ecological speciation. In a meta‐analysis framework, we determined the strength and commonality of IBE in nature. On the basis of 106 studies, we calculated a mean effect size of IBE with and without controlling for spatial autocorrelation among populations. Effect sizes were 0.34 (95% CI 0.24–0.42) and 0.26 (95% CI 0.13–0.37), respectively, indicating that an average of 5% of the neutral genetic differentiation among populations was explained purely by ecological contrast. Importantly, spatial autocorrelation reduced IBE correlations for environmental variables, but not for phenotypes. Through simulation, we showed how the influence of isolation‐by‐distance and spatial autocorrelation of ecological variables can result in false positives or underestimated correlations if not accounted for in the IBE model. Collectively, this meta‐analysis showed that ecologically induced genetic divergence is pervasive across time‐scales and taxa, and largely independent of the choice of molecular marker. We discuss the importance of these results in the context of adaptation and ecological speciation and suggest future research avenues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号