首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The FLP recombinase derived from Saccharomyces cerevisiae mediates precise site‐specific recombination between a pair of FLP recognition targets (FRTs). Like the Cre/loxP system derived from bacteriophage P1, the FLP/FRT system has recently been applied to gene regulation systems using an FLP‐expressing recombinant adenovirus (rAd) (Nakano et al, Nucleic Acids Res. 29: e40, 2001). In an attempt to improve the FLP/FRT system by altering its DNA substrates, we compared the recombination efficiency among different substrates by a quantitative in vitro assay using FLP expressed in mammalian cells. Unexpectedly, we found that one linearized DNA substrate showed 4‐ to > 20‐fold lower recombination efficiency than other substrates, which phenomenon has not been observed in the Cre/loxP system. The quantitative in vitro assay using truncated DNA substrates suggested that the recombination efficiency seemed to be influenced not only by the linearized position of the substrate, but also by the length between a pair of FRTs. Such substrate preference of FLP expressed in mammalian cells should probably be noted when designing versatile applications of the FLP/FRT system as a gene regulation system in mammalian systems. Fortunately, however, we demonstrated that no substrate preference was observed when using a particular substrate (pCAFNF5) and the preference was reduced when using a certain pair of mutant FRTs (f72), which will also be a promising tool for simultaneous gene regulation in combination with wild‐type FRT.  相似文献   

2.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

3.
SUMMARY: The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.  相似文献   

4.
Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1‐cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL‐2) protein in placenta along with increased expression toward the end of pregnancy. PL‐2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1‐cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1‐cre;R26GRR mice revealed that tdsRed‐positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1‐cre;R26GRR testes suggested that Cre‐mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1cre mice line provides a unique resource to understand testicular germ‐cell development. genesis 54:389–397, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
The Cre/lox and FLP/FRT recombination systems have been used extensively for both conditional knockout and cell lineage analysis in mice. Here we report a new multifunctional Cre/FLP dual reporter allele (R26NZG) that exhibits strong and apparently ubiquitous marker expression in embryos and adults. The reporter construct, which is driven by the CAG promoter, was knocked into the ROSA26 locus providing an open chromatin domain for consistent expression and avoiding site‐of‐integration effects often observed with transgenic reporters. R26NZG directs Cre‐dependent nuclear‐localized β‐galactosidase (β‐gal) expression, and can be converted into a Cre‐dependent EGFP reporter (R26NG) by germline excision of the FRT‐flanked nlslacZ cassette. Alternatively, germline excision of the floxed PGKNEO cassette in R26NZG generates an FLP‐dependent EGFP reporter (R26ZG) that expresses β‐gal in FLP‐nonexpressing cells. Finally, by the simultaneous use of both Cre and FLP deleters, R26NZG allows lineage relationships to be interrogated with greater refinement than is possible with single recombinase reporter systems. genesis 47:107–114, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR‐expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR‐CreER knock‐in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)‐inducible Cre recombinase. We show that the MOR‐CreER allele undergoes Tm‐dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR‐CreER mouse line combined with a Cre‐dependent adeno‐associated virus vector enables robust gene manipulation in the MOR‐enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre‐mediated recombination. Thus, the MOR‐CreER mouse is a powerful tool to study MOR‐expressing cells with conditional gene manipulation in developing and mature neural tissues.  相似文献   

7.
We have created a mouse model expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to be able to study the role of defined genetic modifications in the regulation of thyroid function. We chose the thyroglobulin promoter, as it is expressed specifically in the thyroid. In order to obtain reliable expression under the control of the Tg promoter, we used a P1 artificial chromosome (PAC) containing a large piece of the Tg promoter. A tamoxifen inducible CreERT2 construct was selected to avoid the possible consequences of the gene deletion for the development of the thyroid gland, and to study the role of gene deletion in the adult thyroid. Transgenic lines (TgCreERT2) carrying this construct were generated and analyzed by crossing the TgCreERT2 mice with the ROSA26LacZ reporter strain. The activity and specificity of the Cre recombinase was tested by staining for β‐galactosidase activity and by immunohistochemistry using an anti‐Cre‐antibody. In the TgCreERT2xROSA26LacZ reporter line, Cre‐mediated recombination occurred specifically in the thyrocytes only after tamoxifen administration, and no significant staining was observed in controls. The recombination efficiency was nearly complete, since almost all thyrocytes showed X‐gal staining. We could also induce the recombination in utero by giving tamoxifen to the pregnant female. In addition, mice expressing TgCreERT2 had no obvious histological changes, hormonal alterations, or different response to growth stimuli as compared to controls. These results demonstrate that the TgCreERT2 mouse line is a powerful tool to study temporally controlled deletion of floxed genes in the thyroid. genesis 52:333–340, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
9.
 In Drosophila, P-GAL4 enhancer trap lines can target expression of a cloned gene, under control of a UASGAL element, to any cells of interest. However, additional expression of GAL4 in other cells can produce unwanted lethality or side-effects, particularly when it drives expression of a toxic gene product. To target the toxic gene product ricin A chain specifically to adult neurons, we have superimposed a second layer of regulation on the GAL4 control. We have constructed flies in which an effector gene is separated from UASGAL by a polyadenylation site flanked by two FRT sites in the same orientation. A recombination event between the two FRT sites, catalysed by yeast FLP recombinase, brings the effector gene under control of UASGAL. Consequently, expression of the effector gene is turned on in that cell and its descendants, if they also express GAL4. Recombinase is supplied by heat shock induction of a FLP transgene, allowing both timing and frequency of recombination events to be regulated. Using a lacZ effector (reporter) to test the system, we have generated labelled clones in the embryonic mesoderm and shown that most recombination events occur soon after FLP recombinase is supplied. By substituting the ricin A chain gene for lacZ, we have performed mosaic cell ablations in one GAL4 line that marks the adult giant descending neurons, and in a second which marks mushroom body neurons. In a number of cases we observed loss of one or both the adult giant descending neurons, or of subsets of mushroom body neurons. In association with the mushroom body ablations, we also observed misrouting of surviving axons. Received: 17 December 1995 / Accepted: 6 March 1996 Edited by M. Akam  相似文献   

10.
We have previously described a recombinase‐mediated gene stacking system in which the Cre recombinase is used to remove lox‐site flanked DNA no longer needed after each round of Bxb1 integrase‐mediated site‐specific integration. The Cre recombinase can be conveniently introduced by hybridization with a cre‐expressing plant. However, maintaining an efficient cre‐expressing line over many generations can be a problem, as high production of this DNA‐binding protein might interfere with normal chromosome activities. To counter this selection against high Cre activity, we considered a split‐cre approach, in which Cre activity is reconstituted after separate parts of Cre are brought into the same genome by hybridization. To insure that the recombinase‐mediated gene stacking system retains its freedom to operate, we tested for new locations to split Cre into complementing fragments. In this study, we describe testing four new locations for splitting the Cre recombinase for protein fragment complementation and show that the two fragments of Cre split between Lys244 and Asn245 can reconstitute activity that is comparable to that of wild‐type Cre.  相似文献   

11.
Molecular and functional studies of genes in neurons in mouse models require neuron‐specific Cre lines. The current available neuronal Cre transgenic or knock‐in lines either result in expression in a subset of neurons or expression in both neuronal and non‐neuronal tissues. Previously we identified BAF53b as a neuron‐specific subunit of the chromatin remodeling BAF complexes. Using a bacteria artificial chromosome (BAC) construct containing the BAF53b gene, we generated a Cre transgenic mouse under the control of BAF53b regulatory elements. Like the endogenous BAF53b gene, we showed that BAF53b‐Cre is largely neuron‐specific. In both central and peripheral nervous systems, it was expressed in all developing neurons examined and was not observed in neural progenitors or glial cells. In addition, BAF53b‐Cre functioned in primary cultures in a pan‐neuron‐specific manner. Thus, BAF53b‐Cre mice will be a useful genetic tool to manipulate gene expression in developing neurons for molecular, biochemical, and functional studies. genesis, 53:440–448, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
A recombinant adenovirus (rAd) expressing Cre recombinase derived from bacteriophage P1 has already been extensively used for the conditional gene activation and inactivation strategies in mammalian systems. In this study, we generated AxCAFLP, a rAd expressing FLP recombinase derived from Saccharomyces cerevisiae and carried out quantitative comparisons with Cre-expressing rAd in both in vitro and in cultured cells to provide another efficient gene regulation system in mammalian cells. In the in vitro experiments, the relative recombination efficiency of FLP expressed in 293 cells infected with FLP-expressing rAd was approximately one-thirtieth that of Cre even at 30 degrees C, the optimum temperature for FLP activity, and was approximately one-ninetieth at 37 degrees C. Co-infection experiments in HeLa cells using a target rAd conditionally expressing LacZ under the control of FLP showed that an FLP-expressing rAd, infected at a multiplicity of infection (MOI) of 5, was able to activate the transgene in almost 100% of HeLa cells whereas the Cre-expressing rAd was sufficient at an MOI of 0.2. Since an MOI of 5 is ordinarily used in rAd experiments, these results showed that the FLP-expressing rAd is useful for gene activation strategies and is probably applicable to a sequential gene regulation system in combination with Cre-expressing rAd in mammalian cells.  相似文献   

13.
Transgenic mice with a defined cell‐ or tissues‐specific expression of Cre‐recombinase are essential tools to study gene function. Here we report the generation and analysis of a transgenic mouse line (Cdx1::Cre) with restricted Cre‐expression from Cdx1 regulatory elements. The expression of Cre‐recombinase mimicked the endogenous expression pattern of Cdx1 at midgastrulation (from E7.5 to early headfold stage) inducing recombination in the three germlayers of the primitive streak region throughout the posterior embryo and caudal to the heart. This enables gene modifications to investigate patterning of the caudal embryo during and after gastrulation. Interestingly, we identified Cdx1 expression in the trophectoderm (TE) of blastocyst stage embryos. Concordantly, we detected extensive Cre‐mediated recombination in the polar TE and, although to lesser extent, in the mural TE. In E7.5 postimplantation embryos, almost all cells of the extraembryonic ectoderm (ExE), which are derived from the polar TE, are recombined although the ExE itself is negative for Cdx1 and Cre at this stage. These results indicate that Cdx1::Cre mice are also a valuable tool to study gene function in tissues essential for placental development. genesis 47:204–209, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Several genetically modified mouse models have been generated in order to drive expression of the Cre recombinase in the neuroectoderm. However, none of them specifically targets the posterior neural plate during neurulation. To fill this gap, we have generated a new transgenic mouse line in which Cre expression is controlled by a neural specific enhancer (NSE) from the Caudal‐related homeobox 2 (Cdx2) locus. Analyses of Cre activity via breeding with R26R‐YFP reporter mice have indicated that the Cdx2NSE‐Cre mouse line allows for recombination of LoxP sites in most cells of the posterior neural plate as soon as from the head fold stage. Detailed examination of double‐transgenic embryos has revealed that this novel Cre‐driver line allows targeting the entire posterior neural tube with an anterior limit in the caudal hindbrain. Of note, the Cdx2NSE regulatory sequences direct Cre expression along the whole dorso‐ventral axis (including pre‐migratory neural crest cells) and, accordingly, YFP fluorescence has been also observed in multiple non‐cranial neural crest derivatives of double‐transgenic embryos. Therefore, we believe that the Cdx2NSE‐Cre mouse line represents an important novel genetic tool for the study of early events occurring in the caudal neuroectoderm during the formation of both the central and the peripheral nervous systems. genesis 51:777–784. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The regulatory elements of the Tie2/Tek promoter are commonly used in mouse models to direct transgene expression to endothelial cells. Tunica intima endothelial kinase 2 (Tie2) is also expressed in hematopoietic cells, although this has not been fully characterized. We determine the lineages of adult hematopoietic cells derived from Tie2‐expressing populations using Tie2‐Cre;Rosa26R‐EYFP mice. In Tie2‐Cre;Rosa26R‐EYFP mice, analysis of bone marrow cells showed Cre‐mediated recombination in 85% of the population. In adult bone marrow and spleen, we analyzed subclasses of early hematopoietic progenitors, T cells, monocytes, granulocytes, and B cells. We found that ~ 84% of each lineage was EYFP+, and nearly all cells that come from Tie2‐expressing lineages are CD45+, confirming widespread contribution to definitive hematopoietic cells. In addition, more than 82% of blood cells within the embryonic yolk sac were of Tie2+ origin. Our findings of high levels of Tie2‐Cre recombination in the hematopoietic lineage have implications for the use of the Tie2‐Cre mouse as a lineage‐restricted driver strain. genesis 48:563–567, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

17.
To explore the function of genes expressed in adult mouse nociceptive neurons, we generated heterozygous knock-in mice expressing the tamoxifen-inducible Cre recombinase construct CreERT2 downstream of the Na(V)1.8 promoter. CreERT2 encodes a Cre recombinase (Cre) fused to a mutant estrogen ligand-binding domain (ERT2) that requires the presence of tamoxifen for activity. We have previously shown that heterozygous Na(V)1.8-Cre mice will delete loxP flanked genes specifically in nociceptive sensory neurons from embryonic day 14. We therefore used the same strategy of homologous recombination and mouse generation, substituting the Cre cassette with CreERT2. No functional Cre recombinase activity was found in CreERT2 mice crossed with reporter mice in the absence of tamoxifen. We found that, as with Na(V)1.8-Cre mice, functional Cre recombinase was present in nociceptive sensory neurons after tamoxifen induction in vivo. However, the percentage of dorsal root ganglion (DRG) neurons expressing functional Cre activity was much reduced (<10% of the number found in the Na(V)1.8-Cre mouse). We also examined Cre recombinase activity in sensory neurons in culture. After treatment with 1 muM tamoxifen for 48 h, 15% of DRG neurons showed Cre activity. Na(V)1.8-CreERT2 animals may thus be useful for single cell studies of the functional consequences of gene ablation in culture, but are unlikely to be useful for behavioral studies.  相似文献   

18.
After thymic emigration CD4‐T‐cells continue to differentiate into multiple effector and suppressor sublineages in peripheral lymphoid organs. In vivo analysis of peripheral CD4‐T‐cell differentiation has relied on animal models with targeted gene mutations. These are expressed either constitutively or conditionally after Cre mediated recombination. Available Cre transgenic strains to specifically target T‐cells act at stages of thymocyte development that precede thymic selection. Tracing gene functions in CD4‐T‐cell development after thymic exit becomes complicated when the targeted gene is essential during thymic development. Other approaches to conditionally modify gene functions in peripheral T‐cells involve infection of in vitro activated cells with Cre expressing lenti‐, retro‐, or adenoviruses, which precludes in vivo analyses. To study molecular mechanisms of peripheral CD4‐T‐cell differentiation in vivo and in vitro we generated transgenic mice expressing a tamoxifen inducible Cre recombinase (CreERT2) under the control of the CD4 gene promoter. We show here that in CD4CreERT2 mice Cre is inducibly and selectively activated in CD4‐T‐cells. Tamoxifen treatment both in vivo and in vitro results in efficient recombination of loci marked by LoxP sites. Moreover, this strain shows no abnormalities related to transgene insertion. Therefore it provides a valuable tool for studying gene function during differentiation of naïve peripheral CD4‐T‐cells into effector or suppressor sub‐lineages. genesis 50:908–913, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
We describe the generation of transgenic mouse lines expressing Cre recombinase in epithelial cells of the lactating mammary gland. As an expression vector, we used a P1-derived bacterial artificial chromosome (PAC) which harbors the gene for the secretory milk protein, whey acidic protein (Wap). Using homologous recombination in E. coli, the PAC was modified to carry the improved coding sequence of Cre recombinase (iCre). Transgenic lines carrying the WAPiCre PAC express Cre recombinase efficiently in the majority of mammary epithelial cells upon lactation. Of only four transgenic lines produced, three express Cre recombinase to a high efficiency. LoxP-flanked DNA sequences are recombined in virtually all epithelial cells of WAPiCre transgenic mice at lactation day 3.  相似文献   

20.
The albCre transgene, having Cre recombinase driven by the serum albumin (alb) gene promoter, is commonly used to generate adult mice having reliable hepatocyte‐specific recombination of loxP‐flanked (“floxed”) alleles. Based on previous studies, it has been unclear whether albCre transgenes are also reliable in fetal and juvenile mice. Perinatal liver undergoes a dynamic transition from being predominantly hematopoietic to predominantly hepatic. We evaluated Cre activity during this transition in albCre mice using a sensitive two‐color fluorescent reporter system. From fetal through adult stages, in situ patterns of Cre‐dependent recombination of the reporter closely matched expression of endogenous Alb mRNA or protein, indicating most or all hepatocytes, including those in fetal and juvenile livers, had expressed Cre and recombined the reporter. Our results indicate the albCre transgene is effective in converting simple floxed alleles in fetal and neonatal mice and is an appropriate tool for studies on hepatocyte development. genesis 47:789–792, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号