首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
《Autophagy》2013,9(8):1181-1183
Metabolic and therapeutic stress activates several signal transduction pathways and releases damageassociated molecular pattern molecules (DAMPs) that regulate cell death and cell survival. The prototypical DAMP, high-mobility group box 1 protein (HMGB1) is released with sustained autophagy, late apoptosis and necrosis. Our recent findings reveal that the HMGB1 protein triggers autophagy or apoptosis in cancer cells, depending on its redox status. Reducible HMGB1 binds to the receptor for advanced glycation end products (RAGE), induces Beclin 1-dependent autophagy and promotes pancreatic or colon tumor cell line resistance to chemotherapeutic agents or ionizing radiation. In contrast, oxidized HMGB1 increases the cytotoxicity of these agents and induces apoptosis via the mitochondrial pathway. This suggests a new function for HMGB1 within the tumor microenvironment, regulating cell death and survival and suggests that it plays an important functional role in cross-regulating apoptosis and autophagy.  相似文献   

4.
5.
Autophagy has recently elicited significant attention as a mechanism that either protects or promotes cell death, although different autophagy pathways, and the cellular context in which they occur, remain to be elucidated. We report a thorough cellular and biochemical characterization of a novel selective autophagy that works as a protective cell response. This new selective autophagy is activated in pancreatic acinar cells during pancreatitis-induced vesicular transport alteration to sequester and degrade potentially deleterious activated zymogen granules. We have coined the term "zymophagy" to refer to this process. The autophagy-related protein VMP1, the ubiquitin-protease USP9x, and the ubiquitin-binding protein p62 mediate zymophagy. Moreover, VMP1 interacts with USP9x, indicating that there is a close cooperation between the autophagy pathway and the ubiquitin recognition machinery required for selective autophagosome formation. Zymophagy is activated by experimental pancreatitis in genetically engineered mice and cultured pancreatic acinar cells and by acute pancreatitis in humans. Furthermore, zymophagy has pathophysiological relevance by controlling pancreatitis-induced intracellular zymogen activation and helping to prevent cell death. Together, these data reveal a novel selective form of autophagy mediated by the VMP1-USP9x-p62 pathway, as a cellular protective response.  相似文献   

6.
Autophagy is an early cellular event during acute pancreatitis, a disease defined as pancreas self-digestion. The Vacuole Membrane Protein 1 (VMP1) is a trans-membrane protein highly activated in acinar cells early during pancreatitis-induced autophagy and it remains in the autophagosomal membrane. We have shown that VMP1 expression is able to trigger autophagy in mammalian cells, even under nutrient-replete conditions. VMP1 is induced by autophagy stimuli and its expression is required for autophagosome development. VMP1 interacts with Beclin 1 through its hydrophilic C-terminal region, which we named Atg domain, as it is essential for autophagy. Remarkably, VMP1 pancreas-specific transgenic expression in mice promotes autophagosome formation. Most of the autophagy-related proteins were described in yeast or have a yeast homologue. VMP1 does not have any known homologue in yeast but its expression is required to start the autophagic process in mammalian cells. These findings support the hypothesis that mammalian cells may regulate autophagy in a different way. We propose that VMP1 is a novel autophagy related trans-membrane protein, which may lead the way in the search for alternative mechanisms of autophagosome formation.  相似文献   

7.
8.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol‐requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4–phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin‐ or dithiothreitol‐induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over‐expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4–phenylbutyrate, suggesting that heat‐induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b‐dependent manner. Moreover, zeolin and CPY* partially co‐localized with the autophagic body marker GFP–ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.  相似文献   

9.
Yin JJ  Li YB  Wang Y  Liu GD  Wang J  Zhu XO  Pan SH 《Autophagy》2012,8(2):158-164
In pancreatic β-cells, the endoplasmic reticulum (ER) is the crucial site for insulin biosynthesis, as this is where the protein-folding machinery for secretory proteins is localized. Perturbations to ER function of the β-cell, such as those caused by high levels of free fatty acid and insulin resistance, can lead to an imbalance in protein homeostasis and ER stress, which has been recognized as an important mechanism for type 2 diabetes. Macroautophagy (hereafter referred to as autophagy) is activated as a novel signaling pathway in response to ER stress. In this review, we outline the mechanism of ER stress-mediated β-cell death and focus on the role of autophagy in ameliorating ER stress. The development of drugs to take advantage of the potential protective effect of autophagy in ER stress, such as glucagon like peptide-1, will be a promising avenue of investigation.  相似文献   

10.
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy.  相似文献   

11.
Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.  相似文献   

12.
We investigated the cell-death mechanisms induced in esophageal cancer cells in response to the chemotherapeutic drugs, 5-fluorouracil (5-FU) and cisplatin. Chemosensitive cell lines exhibited apoptosis whereas chemoresistant populations exhibited autophagy and a morphology resembling type II programmed cell death (PCD). Cell populations that respond with autophagy are more resistant and will recover following withdrawal of the chemotherapeutic agents. Specific inhibition of early autophagy induction with siRNA targeted to Beclin 1 and ATG7 significantly enhanced the effect of 5-FU and reduced the recovery of drug-treated cells. Pharmacological inhibitors of autophagy were evaluated for their ability to improve chemotherapeutic effect. The PtdIns 3-kinase inhibitor 3-methyladenine did not enhance the cytotoxicity of 5-FU. Disruption of lysosomal activity with bafilomycin A 1 or chloroquine caused extensive vesicular accumulation but did not improve chemotherapeutic effect. These observations suggest that an autophagic response to chemotherapy is a survival mechanism that promotes chemoresistance and recovery and that selective inhibition of autophagy regulators has the potential to improve chemotherapeutic regimes. Currently available indirect inhibitors of autophagy are, however, ineffective at modulating chemosensitivity in these esophageal cancer cell lines.  相似文献   

13.
《Autophagy》2013,9(5):509-524
We investigated the cell-death mechanisms induced in esophageal cancer cells in response to the chemotherapeutic drugs, 5-fluorouracil (5-FU) and cisplatin. Chemosensitive cell lines exhibited apoptosis whereas chemoresistant populations exhibited autophagy and a morphology resembling type II programmed cell death (PCD). Cell populations that respond with autophagy are more resistant and will recover following withdrawal of the chemotherapeutic agents. Specific inhibition of early autophagy induction with siRNA targeted to Beclin 1 and ATG7 significantly enhanced the effect of 5-FU and reduced the recovery of drug-treated cells. Pharmacological inhibitors of autophagy were evaluated for their ability to improve chemotherapeutic effect. The PtdIns 3-kinase inhibitor 3-methyladenine did not enhance the cytotoxicity of 5-FU. Disruption of lysosomal activity with bafilomycin A1 or chloroquine caused extensive vesicular accumulation but did not improve chemotherapeutic effect. These observations suggest that an autophagic response to chemotherapy is a survival mechanism that promotes chemoresistance and recovery and that selective inhibition of autophagy regulators has the potential to improve chemotherapeutic regimes. Currently available indirect inhibitors of autophagy are, however, ineffective at modulating chemosensitivity in these esophageal cancer cell lines.  相似文献   

14.
Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.  相似文献   

15.
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents and plays important physiological roles in human health and disease. It has been proposed that autophagy plays an important role both in tumor progression and in promotion of cancer cell death, although the molecular mechanisms responsible for this dual action of autophagy in cancer have not been elucidated. Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies with 2-3% five-year survival rate. Its poor prognosis has been attributed to the lack of specific symptoms and early detection tools, and its relatively refractory to traditional cytotoxic agents and radiotherapy. Experimental evidence pointed at autophagy as a pancreatic cancer cell mechanism to survive under adverse environmental conditions, or as a defective programmed cell death mechanism that favors pancreatic cancer cell resistance to treatment. Here, we consider several phenotypical alterations that have been related to increase or decrease the autophagic process in pancreatic tumor cells. We specially review autophagy as a cell death mechanism in response to chemotherapeutic drugs.  相似文献   

16.
Zhong J  Kong X  Zhang H  Yu C  Xu Y  Kang J  Yu H  Yi H  Yang X  Sun L 《PloS one》2012,7(6):e39378
CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER), nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.  相似文献   

17.
胰腺癌是一种致死率相当高的消化系统肿瘤,其起病隐蔽导致早期诊断困难。近期研究发现,内质网应激 (endoplasmic reticulum stress,ERS) 状态下的未折叠蛋白反应 (unfolded protein response,UPR) 通路的调节作用,对于胰腺癌发生发展至关重要。UPR通路伴侣蛋白 GRP78 抑制了胰腺导管腺癌 (pancreatic adenocarcinoma,PDAC)细胞的凋亡,并增强了其化学抗性和耐药性。而 UPR 途径及其调节因子对于血管内皮生长因子 (vascular endothelial growth factor,VEGF) 的调节作用,有助于胰腺癌抵抗缺血缺氧环境。尝试靶向 UPR 途径关键调节因子的药物来控制胰腺癌的研究,可以为胰腺癌的治疗开辟新的途径。本文通过对近年来 UPR 在胰腺癌发生发展中的作用及意义进行综述,希望为通过调控 UPR 通路作为针对治疗胰腺癌的关键过程的一种新型抗癌方法研究提供参考。  相似文献   

18.
胰腺癌是一种致死率相当高的消化系统肿瘤,其起病隐蔽导致早期诊断困难。近期研究发现,内质网应激 (endoplasmic reticulum stress,ERS) 状态下的未折叠蛋白反应 (unfolded protein response,UPR) 通路的调节作用,对于胰腺癌发生发展至关重要。UPR通路伴侣蛋白 GRP78 抑制了胰腺导管腺癌 (pancreatic adenocarcinoma,PDAC)细胞的凋亡,并增强了其化学抗性和耐药性。而 UPR 途径及其调节因子对于血管内皮生长因子 (vascular endothelial growth factor,VEGF) 的调节作用,有助于胰腺癌抵抗缺血缺氧环境。尝试靶向 UPR 途径关键调节因子的药物来控制胰腺癌的研究,可以为胰腺癌的治疗开辟新的途径。本文通过对近年来 UPR 在胰腺癌发生发展中的作用及意义进行综述,希望为通过调控 UPR 通路作为针对治疗胰腺癌的关键过程的一种新型抗癌方法研究提供参考。  相似文献   

19.
In addition to mitochondria, BCL‐2 is located at the endoplasmic reticulum (ER) where it is a constituent of several distinct complexes. Here, we identify the BCL‐2‐interacting protein at the ER, nutrient‐deprivation autophagy factor‐1 (NAF‐1)—a bitopic integral membrane protein whose defective expression underlies the aetiology of the neurodegenerative disorder Wolfram syndrome 2 (WFS2). NAF‐1 contains a two iron–two sulphur coordinating domain within its cytosolic region, which is necessary, but not sufficient for interaction with BCL‐2. NAF‐1 is displaced from BCL‐2 by the ER‐restricted BH3‐only protein BIK and contributes to regulation of BIK‐initiated autophagy, but not BIK‐dependent activation of caspases. Similar to BCL‐2, NAF‐1 is found in association with the inositol 1,4,5‐triphosphate receptor and is required for BCL‐2‐mediated depression of ER Ca2+ stores. During nutrient deprivation as a physiological stimulus of autophagy, BCL‐2 is known to function through inhibition of the autophagy effector and tumour suppressor Beclin 1. NAF‐1 is required in this pathway for BCL‐2 at the ER to functionally antagonize Beclin 1‐dependent autophagy. Thus, NAF‐1 is a BCL‐2‐associated co‐factor that targets BCL‐2 for antagonism of the autophagy pathway at the ER.  相似文献   

20.
Autophagy is a degradation process of cytoplasmic cellular constituents, which serves as a survival mechanism in starving cells, and it is characterized by sequestration of bulk cytoplasm and organelles in double-membrane vesicles called autophagosomes. Autophagy has been linked to a variety of pathological processes such as neurodegenerative diseases and tumorigenesis, which highlights its biological and medical importance. We have previously characterized the vacuole membrane protein 1 (VMP1) gene, which is highly activated in acute pancreatitis, a disease associated with morphological changes resembling autophagy. Here we show that VMP1 expression triggers autophagy in mammalian cells. VMP1 expression induces the formation of ultrastructural features of autophagy and recruitment of the microtubule-associated protein 1 light-chain 3 (LC3), which is inhibited after treatment with the autophagy inhibitor 3-methiladenine. VMP1 is induced by starvation and rapamycin treatments. Its expression is necessary for autophagy, because VMP1 small interfering RNA inhibits autophagosome formation under both autophagic stimuli. VMP1 is a transmembrane protein that co-localizes with LC3, a marker of the autophagosomes. It interacts with Beclin 1, a mammalian autophagy initiator, through the VMP1-Atg domain, which is essential for autophagosome formation. VMP1 endogenous expression co-localizes with LC3 in pancreas tissue undergoing pancreatitis-induced autophagy. Finally, VMP1 stable expression targeted to pancreas acinar cell in transgenic mice induces autophagosome formation. Our results identify VMP1 as a novel autophagy-related membrane protein involved in the initial steps of the mammalian cell autophagic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号