首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L., has shown preclinical anticancer efficacy in various cancer models. However the effects of mollugin in regulating cancer cell survival and death remains undefined. In the present study we found that mollugin exhibited cytotoxicity on various cancer models. The suppression of cell viability was due to the induction of mitochondria apoptosis. In addition, the presence of autophagic hallmarks was observed in mollugin-treated cells. Notably, blockade of autophagy by a chemical inhibitor or RNA interference enhanced the cytotoxicity of mollugin. Further experiments demonstrated that phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) and extracellular regulated protein kinases (ERK) signaling pathways participated in mollugin-induced autophagy and apoptosis. Together, these findings support further studies of mollugin as candidate for treatment of human cancer cells.  相似文献   

4.
Akt is a pro‐survival kinase frequently activated in human cancers and is associated with more aggressive tumors that resist therapy. Here, we connect Akt pathway activation to reduced sensitivity to chemotherapy via Akt phosphorylation of Bax at residue S184, one of the pro‐apoptotic Bcl‐2 family proteins required for cells to undergo apoptosis. We show that phosphorylation by Akt converts the pro‐apoptotic protein Bax into an anti‐apoptotic protein. Mechanistically, we show that phosphorylation (i) enables Bax binding to pro‐apoptotic BH3 proteins in solution, and (ii) prevents Bax inserting into mitochondria. Together, these alterations promote resistance to apoptotic stimuli by sequestering pro‐apoptotic activator BH3 proteins. Bax phosphorylation correlates with cellular resistance to BH3 mimetics in primary ovarian cancer cells. Further, analysis of the TCGA database reveals that 98% of cancer patients with increased BAX levels also have an upregulated Akt pathway, compared to 47% of patients with unchanged or decreased BAX levels. These results suggest that in patients, increased phosphorylated anti‐apoptotic Bax promotes resistance of cancer cells to inherent and drug‐induced apoptosis.  相似文献   

5.
Apigenin is a low toxicity and non-mutagenic phytopolyphenol and protein kinase inhibitor. It exhibits anti-proliferating effects on human breast cancer cells. Here we examined several human breast cancer cell lines having different levels of HER2/neu expression and found that apigenin exhibited potent growth-inhibitory activity in HER2/neu-overexpressing breast cancer cells but was much less effective for those cells expressing basal levels of HER2/neu. Induction of apoptosis was also observed in HER2/neu-overexpressing breast cancer cells in a dose- and time-dependent manner. However, the one or more molecular mechanisms of apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells remained to be elucidated. A cell survival pathway involving phosphatidylinositol 3-kinase (PI3K), and Akt is known to play an important role in inhibiting apoptosis in response to HER2/neu-overexpressing breast cancer cells, which prompted us to investigate whether this pathway plays a role in apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells. Our results showed that apigenin inhibits Akt function in tumor cells in a complex manner. First, apigenin directly inhibited the PI3K activity while indirectly inhibiting the Akt kinase activity. Second, inhibition of HER2/neu autophosphorylation and transphosphorylation resulting from depleting HER2/neu protein in vivo was also observed. In addition, apigenin inhibited Akt kinase activity by preventing the docking of PI3K to HER2/HER3 heterodimers. Therefore, we proposed that apigenin-induced cellular effects result from loss of HER2/neu and HER3 expression with subsequent inactivation of PI3K and AKT in cells that are dependent on this pathway for cell proliferation and inhibition of apoptosis. This implies that the inhibition of the HER2/HER3 heterodimer function provided an especially effective strategy for blocking the HER2/neu-mediated transformation of breast cancer cells. Our results also demonstrated that apigenin dissociated the complex of HER2/neu and GRP94 that preceded the depletion of HER2/neu. Apigenin-induced degradation of mature HER2/neu involves polyubiquitination of HER2/neu and subsequent hydrolysis by the proteasome.  相似文献   

6.
《Phytomedicine》2015,22(1):27-35
Osteopenic diseases, such as osteoporosis, are characterized by progressive and excessive bone resorption mediated by enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. Therefore, downregulation of RANKL downstream signals may be a valuable approach for the treatment of bone loss-associated disorders. In this study, we investigated the effects of the naphthohydroquinone mollugin on osteoclastogenesis and its function in vitro and in vivo. Mollugin efficiently suppressed RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) and bone resorbing activity of mature osteoclasts by inhibiting RANKL-induced c-Fos and NFATc1 expression. Mollugin reduced the phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation, including the MAP kinase, Akt, and GSK3β and inhibited the expression of different genes associated with osteoclastogenesis, such as OSCAR, TRAP, DC-STAMP, OC-STAMP, integrin αν, integrin β3, cathepsin K, and ICAM-1. Furthermore, mice treated with mollugin showed significant restoration of lipopolysaccharide (LPS)-induced bone loss as indicated by micro-CT and histological analysis of femurs. Consequently, these results suggested that mollugin could be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis.  相似文献   

7.
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24? phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24? phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.  相似文献   

8.
G protein‐coupled estrogen receptor (GPER) is identified as a critical estrogen receptor, in addition to the classical estrogen receptors ERα and ERβ. In ERα‐negative ovarian cancer cells, our previous studies have found that estrogen stimulated cell proliferation and metastasis via GPER. However, the ligand‐independent function of GPER in ovarian cancer cells is still not clear. Herein, we describe that GPER has a co‐expression with ERα and ERβ, which are first determined in SKOV3 ovarian cancer cell line. In the absence of estrogen, GPER depletion by specific siRNA inhibits the proliferation, migration and invasion of SKOV3 cells. Whereas abrogation of ERα or ERβ by specific antagonist MPP and PHTPP has the opposite effects for stimulation of cell growth. Markedly, GPER knockdown attenuates MPP or PHTPP‐induced cell proliferation, migration and invasion. Furthermore, GPER modulates protein expression of the cell cycle critical components, c‐fos and cyclin D1 and factors for cancer cell invasion and metastasis, matrix metalloproteinase 2 (MMP‐2) and MMP‐9. These findings establish that GPER ligand‐independently stimulates the proliferation, migration and invasion of SKOV3 cells. Knockdown of GPER attenuates the progression of ovarian cancer that caused by functional loss of ERα or ERβ. Targeting GPER provides new aspect as a potential therapeutic strategy in ovarian cancer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.  相似文献   

10.
HER2/neu oncogene is frequently deregulated in cancers, and the (PI3K)-Akt signaling is one of the major pathways in mediating HER2/neu oncogenic signal. p57Kip2, an inhibitor of cyclin-depependent kinases, is pivotal in regulating cell cycle progression, but its upstream regulators remain unclear. Here we show that the HER2-Akt axis is linked to p57Kip2 regulation, and that Akt is a negative regulator of p57Kip2. Ectopic expression of Akt can decrease the expression of p57Kip2, while Akt inhibition leads to p57Kip2 stabilization. Mechanistic studies show that Akt interacts with p57Kip2 and causes cytoplasmic localization of p57Kip2. Akt phosphorylates p57 on Ser 282 or Thr310. Akt activity results in destabilization of p57 by accelerating turnover rate of p57 and enhancing p57 ubiquitination. Importantly, the negative impact of HER2/Akt on p57 stability contributes to HER2-mediated cell proliferation, transformational activity and tumorigenicity. p57 restoration can attenuate these defects caused by HER2. Significantly, Kaplan-Meier analysis of tumor samples demonstrate that in tumors where HER2 expression was observed, high expression levels of p57Kip2 were associated with better overall survival. These data suggest that HER2/Akt is an important negative regulator of p57Kip2, and that p57 restoration in HER2-overexpressing cells can reduce breast tumor growth. Our findings indicate the applicability of employing p57 regulation as a therapeutic intervention in HER2-overexpressing cancers.  相似文献   

11.
As a de‐ubiquitin enzyme, ubiquitin C‐terminal hydrolase (UCH)‐L1 has been shown to be overexpressed in several human cancers. However, the function of UCH‐L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH‐L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH‐L1 expression failed to alter cell proliferation in MCF‐7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH‐L1 led to suppression of invasion in UCH‐L1 overexpressing MCF‐7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity‐dependent biotin identification method was developed by fusing UCH‐L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH‐L1 can interact with Akt in MCF‐7 cells. Pulldown assay with His tagged recombinant UCH‐L1 protein and cell lysate from MCF‐7 cells further demonstrated that UCH‐L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH‐L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH‐L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.  相似文献   

12.
Abstract. Objectives: More than 50 years ago, we learned that breast cancer cells (and those of many other types of tumour) endogenously synthesize 95% of fatty acids (FAs) de novo, despite having adequate nutritional lipid supply. Today, we know that breast cancer cells benefit from this phenomenon in terms of enhanced cell proliferation, survival, chemoresistance and metastasis. However, the exact role of the major lipogenic enzyme fatty acid synthase (FASN) as cause, correlate or facilitator of breast cancer remains unidentified. Materials and methods: To evaluate a causal effect of FASN‐catalysed endogenous FA biosynthesis in the natural history of breast cancer disease, HBL100 cells (an SV40‐transformed in vitro model for near‐normal gene expression in the breast epithelium), and MCF10A cells (a non‐transformed, near diploid, spontaneously immortalized human mammary epithelial cell line) were acutely forced to overexpress the human FASN gene. Results: Following transient transfection with plasmid pCMV6‐XL4 carrying full‐length human FASN cDNA (gi: NM 004104), HBL100 cells enhanced their endogenous lipid synthesis while acquiring canonical oncogenic properties such as increased size and number of colonies in semisolid (i.e. soft‐agar) anchorage‐independent cultures. Anchorage‐dependent cell proliferation assays in low serum (0.1% foetal bovine serum), MTT‐based assessment of cell metabolic status and cell death ELISA‐based detection of apoptosis‐induced DNA‐histone fragmentation, together revealed that sole activation of endogenous FA biosynthesis was sufficient to significantly enhance breast epithelial cell proliferation and survival. When analysing molecular mechanisms by which acute activation of de novo FA biosynthesis triggered a transformed phenotype, HBL100 cells, transiently transfected with pCMV6‐XL4/FASN, were found to exhibit a dramatic increase in the number of phosphor‐tyrosine (Tyr)‐containing proteins, as detected by 4G10 antiphosphor‐Tyr monoclonal antibody. Phosphor‐Tyr‐specific antibodies recognizing the phosphorylation status of either the 1173 Tyr residue of epidermal growth factor receptor (HER1) or the 1248 Tyr residue of HER2, further revealed that FASN‐induced Tyr‐phosphorylation at ~180 kDa region mainly represented that of these key members of the HER (erbB) network, which remained switched‐off in mock‐transfected HBL100 cells. ELISA and immunoblotting procedures demonstrated that FASN overactivation significantly increased (> 200%) expression levels of epidermal growth factor receptor and HER2 proteins in HBL100 cells. Proteome Profiler? antibody arrays capable of simultaneously detecting relative levels of phosphorylation of 42 phospho‐receptor Tyr‐kinases (RTKs) confirmed that acute activation of endogenous FA biosynthesis specifically promoted hyper‐Tyr‐phosphorylation of HER1 and HER2 in MCF10A cells. This FASN‐triggered HER1/HER2‐breast cancer‐like phenotype was specifically inhibitable either by FASN inhibitor C75 or by Tyr‐kinase inhibitors (TKIs) gefitinib (Iressa?) and lapatinib (Tykerb?) but not by chemotherapeutic agents such as cisplatin. Transient overexpression of FASN dramatically increased HBL100 breast epithelial cells’ sensitivity to cytotoxic effects of C75, gefitinib and lapatinib (~8, 10 and > 15 times, respectively), while significantly decreasing (~3 times) cisplatin efficacy. Conclusions: Although we cannot definitely establish FASN as a novel oncogene in breast cancer, this study reveals for the first time that exacerbated endogenous FA biosynthesis in non‐cancerous epithelial cells is sufficient to induce a cancer‐like phenotype functionally dependent on the HER1/HER2 duo. These findings may perhaps radically amend our current perspective of endogenously synthesized fat, as on its own, it appears to actively increase signal‐to‐noise ratio in the HER1/HER2‐driven progression of human breast epithelial cells towards malignancy.  相似文献   

13.
Abstract. Objectives: We have evaluated the physiological roles of transforming growth factor‐β1 (TGF‐β1) on differentiation, migration, proliferation and anti‐apoptosis characteristics of cultured spinal cord‐derived neural progenitor cells. Methods: We have used neural progenitor cells that had been isolated and cultured from mouse spinal cord tissue, and we also assessed the relevant reaction mechanisms using an activin‐like kinase (ALK)‐specific inhibitory system including an inhibitory RNA, and found that it involved potential signalling molecules such as phosphatidylinositol‐3‐OH kinase (PI3K)/Akt and mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK1/2). Results and Conclusions: Transforming growth factor‐β1‐mediated cell population growth was activated after treatment and was also effectively blocked by an ALK41517‐synthetic inhibitor (4‐(5‐benzo(1,3) dioxol‐5‐yl‐4‐pyridine‐2‐yl‐1H‐imidazole‐2‐yl) benzamide (SB431542) and ALK siRNA, thereby indicating the involvement of SMAD2 in the TGF‐β1‐mediated growth and migration of these neural progenitors cells (NPC). In the present study, TGF‐β1 actively induced NPC migration in vitro. Furthermore, TGF‐β1 demonstrated extreme anti‐apoptotic behaviour against hydrogen peroxide‐mediated apoptotic cell death. At low dosages, TGF‐β1 enhanced (by approximately 76%) cell survival against hydrogen peroxide treatment via inactivation of caspase‐3 and ‐9. TGF‐β1‐treated NPCs down‐regulated Bax expression and cytochrome c release; in addition, the cells showed up‐regulated Bcl‐2 and thioredoxin reductase 1. They also had increased p38, Akt and ERK1/2 phosphorylation, showing the involvement of both the PI3K/Akt and MAPK/ERK1/2 pathways in the neuroprotective effects of TGF‐β1. Interestingly, these effects operate on specific subtypes of cells, including neurones, neural progenitor cells and astrocytes in cultured spinal cord tissue‐derived cells. Lesion sites of spinal cord‐overexpressing TGF‐β1‐mediated prevention of cell death, cell growth and migration enhancement activity have been introduced as a possible new basis for therapeutic strategy in treatment of neurodegenerative disorders, including spinal cord injuries.  相似文献   

14.
In this study, we investigated the effects and molecular mechanisms of 2‐phenylbenzimidazole‐5‐sulphonic acid (PBSA), an ultraviolet B protecting agent used in sunscreen lotions and moisturizers, on ovarian cancer cell responses and tumour angiogenesis. PBSA treatment markedly blocked mitogen‐induced invasion through down‐regulation of matrix metalloproteinase (MMP) expression and activity in ovarian cancer SKOV‐3 cells. In addition, PBSA inhibited mitogen‐induced cell proliferation by suppression of cyclin‐dependent kinases (Cdks), but not cyclins, leading to pRb hypophosphorylation and G1 phase cell cycle arrest. These anti‐cancer activities of PBSA in ovarian cancer cell invasion and proliferation were mediated by the inhibition of mitogen‐activated protein kinase kinase 3/6‐p38 mitogen‐activated protein kinase (MKK3/6‐p38MAPK) activity and subsequent down‐regulation of MMP‐2, MMP‐9, Cdk4, Cdk2 and integrin β1, as evidenced by treatment with p38MAPK inhibitor SB203580. Furthermore, PBSA suppressed the expression and secretion of vascular endothelial growth factor in SKOV‐3 cells, leading to inhibition of capillary‐like tubular structures in vitro and angiogenic sprouting ex vivo. Taken together, our results demonstrate the pharmacological effects and molecular targets of PBSA on modulating ovarian cancer cell responses and tumour angiogenesis, and suggest further evaluation and development of PBSA as a promising chemotherapeutic agent for the treatment of ovarian cancer.  相似文献   

15.
Overexpression of human epidermal growth factor receptor 2 (HER2) is observed in breast cancer. The major snag faced by the human population is the development of chemoresistance to HER2 inhibitors by advanced stage breast cancer cells. Moreover, recent researchers focussed on fisetin as an antiproliferative and chemotherapeutic agent. Therefore, this study was intended to analyze the effects of fisetin on HER2/neu‐overexpressing breast cancer cell lines. Our results depicted that fisetin induced apoptosis of these cells by various mechanisms, such as inactivation of the receptor, induction of proteasomal degradation, decreasing its half‐life, decreasing enolase phosphorylation, and alteration of phosphatidylinositol 3‐kinase/Akt signaling.  相似文献   

16.
Sodium valproate (VPA) has been recently identified as a selective class I histone deacetylase (HDAC) inhibitor and explored for its potential as an anti‐cancer agent. The anti‐cancer properties of VPA are generally attributed to its HDAC inhibitory activity indicating a clear overlap of these two actions, but the underlying mechanisms of its anti‐tumor effects are not clearly elucidated. The present study aimed to delineate the molecular mechanism of VPA in potentiating cytotoxic effects of anti‐cancer drugs with focus on inhibition of HDAC activity. Using human neuroblastoma cell lines, SK‐N‐MC, SH‐SY5Y, and SK‐N‐SH, we show that non‐toxic dose (2 mM) of VPA enhanced staurosporine (STS)‐induced cell death as assessed by MTT assay, PARP cleavage, hypodiploidy, and caspase 3 activity. Mechanistically, the effect of VPA was mediated by down regulation of survivin, an anti‐apoptotic protein crucial in resistance to STS‐mediated cytotoxicity, through Akt pathway. Knock down of class I HDAC isoforms remarkably inhibited HDAC activity comparable with that of VPA but had no effect on STS‐induced apoptosis. Moreover, MS‐275, a structurally distinct class I HDAC inhibitor did not affect STS‐mediated apoptosis, nor decrease the levels of survivin and Akt. Valpromide (VPM), an amide analog of VPA that does not inhibit HDAC also potentiated cell death in NB cells associated with decreased survivin and Akt levels suggesting that HDAC inhibition might not be crucial for STS‐induced apoptosis. The study provides new information on the possible molecular mechanism of VPA in apoptosis that can be explored in combination therapy in cancer. J. Cell. Biochem. 114: 854–863, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
Recent reports have shown that the AR is the key determinant of the molecular changes required for driving prostate cancer cells from an androgen‐dependent to an androgen‐independent or androgen depletion‐independent (ADI) state. Several recent publications suggest that down‐regulation of AR expression should therefore be considered the principal strategy for the treatment of ADI prostate cancer. However, no valid data is available about how androgen‐dependent prostate cancer cells respond to apoptosis‐inducing drugs after knocking down AR expression and whether prostate cancer cells escape apoptosis after inhibition of AR expression. This review will focus on mechanisms of prostate cancer cell survival after inhibition of AR activity mediated either by androgen depletion or by targeting the expression of AR by siRNA. We have shown that knocking down AR expression by siRNA induced PI3K‐independent activation of Akt, which was mediated by calcium/calmodulin‐dependent kinase II (CaMKII). We also showed that the expression of CaMKII genes is under AR control: active AR in the presence of androgens inhibits CaMKII gene expression whereas inhibition of AR activity results in an elevated level of kinase activity and in enhanced expression of CaMKII genes. This in turn activates the anti‐apoptotic PI3K/Akt pathways. CaMKII also express anti‐apoptotic activity that is independent from the Akt pathway. This may therefore be an important mechanism by which prostate cancer cells escape apoptosis after androgen depletion or knocking down AR expression. In addition, we have found that there is another way to escape cell death after AR inhibition: DNA damaging agents cannot fully activate p53 in the absence of AR and as a result p53 down stream targets, for example, microRNA‐34, cannot be activated and induce apoptosis. This implies that there may be a need for re‐evaluation of the therapeutic approaches to human prostate cancer. J. Cell. Biochem. 106: 363–371, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Active avoidance by tumor cells from attack and elimination by immune cells is an emerging cancer hallmark that is achieved primarily through decreasing the levels of major histocompatibility complex class I (MHC-I) at the cancer cells’ surface. Deficiencies in MHC-I antigen-restricted immunosurveillance may be intertwined with an altered, Warburg-like cancer cell-intrinsic metabolism, another emerging hallmark of cancer that involves a switch from mitochondrial respiration to glycolysis to efficiently support large-scale biosynthetic programs that are required for active cell proliferation. We recently envisioned that intervention strategies aimed at reversing the bioenergetic signature of cancer cells (e.g., the antidiabetic biguanide metformin) should correct oncogene (e.g., HER2)-driven MHC-I defects, thus preventing immune escape of oncogene transformants. First, we explored how metformin treatment impacted mitochondrial biogenesis in cultured breast cancer cells overexpressing the membrane tyrosine kinase receptor HER2, the best-characterized downregulator of MHC-I. Metformin exposure was found to dose-dependently increase the expression levels of cytochrome c oxidase I and mitochondrial succinate dehydrogenase, which are encoded by mitochondrial and nuclear DNA, respectively. Second, we explored whether metformin-enhanced mitochondrial biogenesis might significantly alter the MHC-I status in breast carcinoma cells. MHC-I expression, as assessed by flow cytometry using an anti-HLA-ABC monoclonal antibody, was fully restored (up to ~25-fold upregulation) in MHC-I-negative HER2 gene-amplified carcinoma cells. These findings may help delineate a previously unrecognized mechanism through which metformin (and metformin-like drugs) may enable a cancer patient’s own immune system to mount an efficient anti-metastasis response that can prevent or delay disease recurrence. Restored antigenicity and immunogenicity of tumor cells may represent a previously unrecognized primary mode of action underlying the cancer-preventive effects of metformin.  相似文献   

20.
Chiang CT  Way TD  Tsai SJ  Lin JK 《FEBS letters》2007,581(30):5735-5742
Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号