首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
GABAergic interneuron loss, maturational delay or imbalance of glutamatergic to GABAergic signaling has been implicated in several neuropsychiatric disorders including Tourette syndrome and attention-deficit/hyperactivity disorder (ADHD). In schizophrenia, decreases in parvalbumin (PV), somatostatin (Sst) and glutamic acid decarboxylase (GAD) RNA have been observed and seem to indicate a failure in maturation in PV and Sst neurons. In Tourette syndrome, which has a high level of comorbid ADHD, reduced numbers of parvalbumin expressing neurons have been observed in the basal ganglia of affected patients. In addition, polymorphisms in the GAD1 gene that codes for GAD67 protein have been associated with ADHD. We have examined whether mice with a disrupted Gad67 allele, the Gad67 GFP knock-in mice (Gad67-GFP+/?), display abnormal locomotor behavior or altered anxiety behavior on the elevated plus maze. We found that Gad67-GFP+/? mice displayed a mild hyperactivity compared to control littermates.  相似文献   

3.
Rbt (Rabo torcido) is a new semidominant mouse mutant with a variety of skeletal abnormalities. Heterozygous Rbt mutants display homeotic anteroposterior patterning problems along the axial skeleton that resemble Polycomb group and trithorax gene mutations. In addition, the Rbt mutant displays strong similarities to the phenotype observed in Ts (Tail-short), indicating also a homeotically transformed phenotype in these mice. We have mapped the Rbt locus to an interval of approximately 6 cM on mouse Chromosome (Chr) 11 between microsatellite markers D11Mit128 and D11Mit103. The Ts locus was mapped within a shorter interval of approximately 3 cM between D11Mit128 and D11Mit203. This indicates that Rbt and Ts may be allelic mutations. Sox9, the human homolog of which is responsible for the skeletal malformation syndrome campomelic dysplasia, was mapped proximal to D11Mit128. It is, therefore, unlikely that Ts and Rbt are mouse models for this human skeletal disorder. Received: 14 April 1996 / Accepted: 22 July 1996  相似文献   

4.
Linkage studies have identified many chromosomal regions containing obesity genes in mice. However, only a few of these quantitative trait loci (QTLs) have been used to guide the production of congenic mouse strains that retain obesity phenotypes. We seek to identify chromosomal regions containing obesity genes in the BSB model of spontaneous obesity because the BSB model is a multigenic obesity model. Previous studies identified QTLs on Chromosomes (Chrs) 2, 6, 7,12, and 15. BSB mice are made by backcross of lean C57BL/6J × Mus spretus. F1s were backcrossed to C57BL/6J mice to produce BSB progeny. We have constructed a new BSB cross and produced congenic mice with obesity phenotypes by marker-directed selection called B6.S–D2Mit194D2Mit311. We found a highly significant QTL for percentage body lipid on Chr 2 just proximal to the Agouti locus. Chr 2 congenics were constructed to determine whether the main effects would be detectable. We observed highly significant linkage of the Chr 2 congenic containing Agouti and containing markers distal to D2Mit311 and proximal to D2Mit194. Thus, this congenic contains approximately 14.6 cM or 30 Mb (about 1.1% of the spretus mouse genome) and several hundred genes. The obesity phenotype of the QTL is retained in the congenic. The congenic can now be used to model the genetic and physiological basis for a relatively simple, perhaps monogenic, obesity.  相似文献   

5.
6.
Mature DBA/2J (D2) mice are very sensitive to seizures induced by various chemical and physical stimuli, whereas C57BL/6J (B6) mice are relatively seizure resistant. We have conducted a genome-wide search for quantitative trait loci (QTLs) influencing the differential sensitivity of these strains to kainic acid (KA)-induced seizures by studying an F2 intercross population. Parental, F1, and F2 mice (8–10 weeks of age) were injected subcutaneously with 25 mg/kg of KA and observed for 3 h. Latencies to focal and generalized seizures and status epilepticus were recorded and used to calculate an overall seizure score. Results of seizure testing indicated that the difference in susceptibility to KA-induced seizures between D2 and B6 mice is a polygenic phenomenon with at least 65% of the variance due to genetic factors. First-pass genome screening (10-cM marker intervals) in F2 progeny (n = 257) documented a QTL of moderate effect on Chromosome (Chr) 1 with a peak LOD score of 5.5 (17% of genetic variance explained) localized between D1Mit30 and D1Mit16. Provisional QTLs of small effect were detected on Chr 11 (D11Mit224D11Mit14), 15 (D15Mit6D15Mit46) and 18 (D18Mit9D18Mit144). Multiple locus models generally confirmed the Mapmaker/QTL results and also provided evidence for another QTL on Chr 4 (D4Mit9). Multilocus analysis of seizure severity suggested that additional loci on Chrs 5 (D5Mit11), 7 (D7Mit66), and 15 (D15Nds2) might also contribute to KA-induced seizure response. Overall, our results document a complex genetic determinism for KA-induced seizures in these mouse strains with contributions from as many as eight QTLs. Received: 16 April 1996 / Accepted: 21 October 1996  相似文献   

7.

Background

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder, affecting millions of people worldwide. Although dysfunction of multiple neurotransmitter systems including cholinergic, glutamatergic and GABAergic systems has been associated with AD progression the underlying mechanisms remain elusive. We and others have recently found that GABA content is elevated in AD brains and linked to cognitive deficits in AD mouse models. The glutamic acid decarboxylase 67 (GAD67) is the major enzyme converting glutamate into GABA and has been implied in a number of neurological disorders such as epilepsy and schizophrenia. However, whether Gad67 is involved in AD pathology has not been well studied. Here, we investigate the functional role of GAD67 in an AD mouse model with Gad67 haploinsufficiency that is caused by replacing one allele of Gad67 with green fluorescent protein (GFP) gene during generation of GAD67-GFP mice.

Methods

To genetically reduce GAD67 in AD mouse brains, we crossed the Gad67 haploinsufficient mice (GAD67-GFP+/?) with 5xFAD mice (harboring 5 human familial AD mutations in APP and PS1 genes) to generate a new line of bigenic mice. Immunostaining, ELISA, electrophysiology and behavior test were applied to compare the difference between groups.

Results

We found that reduction of GAD67 resulted in a significant decrease of amyloid β production in 5xFAD mice. Concurrently, the abnormal astrocytic GABA and tonic GABA currents, as well as the microglial reactivity were significantly reduced in the 5xFAD mice with Gad67 haploinsufficiency. Importantly, the olfactory memory deficit of 5xFAD mice was rescued by Gad67 haploinsufficiency.

Conclusions

Our results demonstrate that GAD67 plays an important role in AD pathology, suggesting that GAD67 may be a potential drug target for modulating the progress of AD.
  相似文献   

8.
9.
We present here the fine genetic mapping of the proximal part of mouse Chromosome (Chr) 12 between D12Mit54 and D12Mit4. This chromosomal region contains three loci, Pax9, Tcf3a, and Acrodysplasia (Adp), which seem to play an important role in pattern formation during mouse embryogenesis. The Adp mutation, which was created by transgene integration, causes skull, paw, and tail deformities. Pax9, which is expressed in the face, paws, and tail, once qualified as a possible candidate for the Adp locus. We analyzed 997 interspecific backcross progeny for recombination between the markers D12Mit54 and D12Mit4; we recovered 117 recombinants, which were further typed for Pax9, Tcf3a, Adp, D12Mit88, D12Nds1, D12Mit36, and D12Mit34. This study represents the first instance in which all the above loci have been included in a single analysis, thereby allowing unambiguous determination of the genetic order and distance between D12Mit54 and D12Mit4. From our results, we conclude that the Adp locus is distinct from either Pax9 or Tcf3a.  相似文献   

10.
Previous work identified a QTL affecting murine size (particularly tail length) in a cross between C57BL/6J and DBA/2J mice and refined its location to an 8-cM region between D1Mit30 and D1Mit57. The present study used recombinant progeny testing to fine map this QTL. Individuals from a partially congenic strain carrying chromosomes recombinant between D1Mit30 and D1Mit57 were mated to DBA/2J, generating 942 progeny. Two QTL affecting 10-week tail length were identified in this population: one at 9.7 cM distal to D1Mit30 (the position estimated in previous work), and another of smaller effect near D1Mit30. A second population (n=787) was generated by mating siblings from the progeny test population that were heterozygous for the same segment of chromosome, including only recombinants between D1Mit265 and D1Mit57. In the latter population, two QTL were also identified: one at 10.2 cM distal to D1Mit30, and another of smaller effect at the distal end of the mapped region (at D1Mit150). When the two populations were analyzed together, the estimated location of the central QTL was 10.2 cM distal to D1Mit30 and there was marginally significant evidence of the distal QTL. The central QTL explained approximately 7% of the phenotypic variance, and the 95% confidence interval for its position (determined by bootstrapping) was a 1.4-cM region, approximately the region from D1Mit451 to D1Mit219. The central QTL also affected tail length and body mass at 3 and 6 weeks of age, but to a lesser degree than 10-week tail length.  相似文献   

11.
12.
The gracile axonal dystrophy (gad) mouse, which shows hereditary sensory ataxia and motor paresis, has been morphologically characterized by the dying back type of axonal degeneration in the nerve terminals of dorsal root ganglion cells and motor neurons. In the present study, using an intraspecific backcross between gad and C57BL/6J mice, the gracile axonal dystrophy (gad) gene was mapped to a region between D5Mit197 and D5Mit113. Estimated distances between gad and D5Mit197 and between gad and D5Mit113 are 0.4 ± 0.3 and 5.0 ± 1.0 cM, respectively. The gene order was defined: centromere- D5Mit81-D5Mit233-D5Mit184/D5Mit254-D5Mit256-D5Mit197-gad-D5Mit113-D5Mit7 . The mouse map location of the gad locus appears to be in a region homologous to human 4p15-p16. Our present data suggest that the nearest flanking marker D5Mit197 provides a useful anchor for the isolation of the gad gene in a yeast artificial chromosome contig.  相似文献   

13.
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE‐ and CGE‐derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT‐PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE‐ and CGE‐derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 647–672, 2013  相似文献   

14.
GABAergic Purkinje cells (PCs) provide the primary output from the cerebellar cortex, which controls movement and posture. Although the mechanisms of PC differentiation have been well studied, the precise origin and initial specification mechanism of PCs remain to be clarified. Here, we identified a cerebellar and spinal cord GABAergic progenitor-selective cell surface marker, Neph3, which is a direct downstream target gene of Ptf1a, an essential regulator of GABAergic neuron development. Using FACS, Neph3+ GABAergic progenitors were sorted from the embryonic cerebellum, and the cell fate of this population was mapped by culturing in vitro. We found that most of the Neph3+ populations sorted from the mouse E12.5 cerebellum were fated to differentiate into PCs while the remaining small fraction of Neph3+ cells were progenitors for Pax2+ interneurons, which are likely to be deep cerebellar nuclei GABAergic neurons. These results were confirmed by short-term in vivo lineage-tracing experiments using transgenic mice expressing Neph3 promoter-driven GFP. In addition, we identified E-cadherin as a marker selectively expressed by a dorsally localized subset of cerebellar Neph3+ cells. Sorting experiments revealed that the Neph3+ E-cadherinhigh population in the embryonic cerebellum defined PC progenitors while progenitors for Pax2+ interneurons were enriched in the Neph3+ E-cadherinlow population. Taken together, our results identify two spatially demarcated subregions that generate distinct cerebellar GABAergic subtypes and reveal the origin of PCs in the ventricular zone of the cerebellar primordium.  相似文献   

15.
16.
Cyclin‐dependent kinase 5 (Cdk5) is a serine/threonine kinase, and its activity is dependent upon an association with a neuron‐specific activating subunit. It was previously reported that Cdk5−/− mice exhibit perinatal lethality and defective neuronal positioning. In this study, they focused on the analysis of neuronal positioning of GABAergic neurons in the forebrain. Defective formation of the ventral striatum, nucleus accumbens, and olfactory tubercles was found in Cdk5−/− embryos. To further study this abnormal development, we generated and analyzed Dlx5/6‐Cre p35 conditional KO (cKO); p39−/− mice in which forebrain GABAergic neurons have lost their Cdk5 kinase activity. Defective formation of the nucleus accumbens and olfactory tubercles as well as neuronal loss in the striatum of Dlx5/6‐Cre p35cKO; p39−/− mice was found. Elevated levels of phosphorylated JNK were observed in neonatal striatal samples from Dlx5/6‐Cre p35cKO; p39−/− mice, suggestive of neuronal death. These results indicate that Cdk5 is required for the formation of the ventral striatum in a cell‐autonomous manner, and loss of the kinase activity of Cdk5 causes GABAergic neuronal death in the developing mouse forebrain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

17.

Background

Although cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the severity of disease is highly variable indicating the influence of modifier genes. The intestines of Cftr deficient mice (CF mice: Cftr tm1Unc ) are prone to obstruction by excessive mucus accumulation and are used as a model of meconium ileus and distal intestinal obstruction syndrome. This phenotype is strongly dependent on the genetic background of the mice. On the C57Bl/6 background, the majority of CF mice cannot survive on solid mouse chow, have inflammation of the small intestine, and are about 30% smaller than wild type littermates. In this work potential modifier loci of the CF intestinal phenotype were identified.

Results

CF mice on a mixed genetic background (95% C57Bl/6 and 5% 129Sv) were compared to CF mice congenic on the C57Bl/6 background for several parameters of the intestinal CF phenotype. CF mice on the mixed background exhibit significantly greater survival when fed dry mouse chow, have reduced intestinal inflammation as measured by quantitative RT-PCR for marker genes, have near normal body weight gain, and have reduced mucus accumulation in the intestinal crypts. There was an indication of a gender effect for body weight gain: males did not show a significant improvement at 4 weeks of age, but were of normal weight at 8 weeks, while females showed improvement at both 4 and 8 weeks. By a preliminary genome-wide PCR allele scanning, three regions were found to be potentially associated with the milder phenotype. One on chr.1, defined by marker D1Mit36, one on chr. 9 defined by marker D9Mit90, and one on chr. 10, defined by marker D10Mit14.

Conclusion

Potential modifier regions were found that have a positive impact on the inflammatory phenotype of the CF mouse small intestine and animal survival. Identification of polymorphisms in specific genes in these regions should provide important new information about genetic modifiers of the CF intestinal phenotype.  相似文献   

18.
19.
We previously reported a quantitative trait locus for body weight, non-insulin-dependent diabetes 5 (Nidd5), on Chromosome 2 in the TSOD (Tsumura, Suzuki, Obese Diabetes) mouse, a model of polygenic obese type 2 diabetes. To find the gene responsible for a specific component of the pathogenesis, we used a marker-assisted selection protocol to produce congenic strains. These mice are designed to carry a control BALB/cA-derived genomic interval and a TSOD background to look for loss of phenotype. One of the strains with the widest congenic interval, D2Mit297-D2Mit304, showed reductions in both body weight and adiposity compared with TSOD mice. The phenotypic analyses of other congenic strains further narrowed the locus in a 9.4-Mb interval between D2Mit433 and D2Mit91, around which numerous loci for body weight and adiposity have been mapped previously. Although the locus showed a relatively modest effect on body weight, it had a major influence on fat mass that explains approximately 60% of the difference in the adipose index between parental TSOD and BALB/cA mice. Furthermore, the congenic strain with a minimal BALB/cA-derived region showed significantly smaller cell sizes of white and brown adipocytes compared with the control littermates. However, the locus did not primarily affect food consumption, general activity, or rectal temperature after cold exposure, although there are clear differences in these traits between the parental strains. The present work physically delineates the major locus for adiposity in the TSOD mouse.  相似文献   

20.
The purpose of the present study was to characterize the C57BL/6J, A/J, and AXB/BXA Recombinant Inbred (RI) strains of mice for voluntary alcohol consumption. Quantitative Trait Locus (QTL) analysis was used to provide provisional location of QTLs for alcohol consumption. The inbred strains were screened for levels of alcohol intake (calculated as alcohol preference and absolute alcohol consumption) by receiving 4 days of forced exposure to a 10% (wt/vol) solution of alcohol, followed by 3 weeks of free choice between water and 10% alcohol. A wide and continuous distribution of values for alcohol consumption and preference was obtained in the AXB/BXA RI strains, confirming polygenic influences on alcohol-related behaviors. Significant gender differences were found for both alcohol preference [F28,651= 2.12, p < 0.001] and absolute alcohol consumption [F28,647= 2.57, p < 0.001]. In males, putative QTLs were mapped to chromosomes (Chrs) 2, 5, 7, 10, 11, and 16. Multiple regression analysis indicated that approximately 75% of the genetic variance in alcohol preference in males could be accounted for by three of the QTL regions. Several of the putative QTLs appeared to be male-specific (Tyr on Chr 7; D10Mit126 on Chr 10; D11Mit61 on Chr 11). In females, seven putative QTLs were mapped to Chrs 2, 4, 5, 7, 11, 16, and 19. Approximately 90% of the genetic variance in alcohol preference in females could be accounted for by four QTL regions, as determined by multiple regression. The QTL on Chr 11 near D11Mit35 appeared to be female-specific. This site was close to a female-specific QTL (Alcp2) previously mapped in C57BL/6J × DBA/2J backcrosses by Melo and coworkers (Nat Genet 13, 147, 1996). The QTLs mapped for alcohol preference in the present study must be considered suggestive at the present time, since only D2Mit74 met very strict statistical criteria for significance. However, the concordance across several studies for the loci on Chrs 2, 4, 7, 9, and 11 suggest that some common QTLs influencing alcohol preference have been identified. Confirmation of QTLs mapped in the present study is currently being conducted in a new series of recombinant congenic (RC) strains developed from reciprocal backcrosses between the A/J and C57BL/6J progenitors. The concomitant use of both RI and RC strains developed from the same progenitors should provide a powerful means of detecting, confirming, and mapping QTLs for alcohol-related traits. Received: 25 August 1998 / Accepted: 8 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号