首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organisms are projected to shift their distribution ranges under climate change. The typical way to assess range shifts is by species distribution models (SDMs), which predict species’ responses to climate based solely on projected climatic suitability. However, life history traits can impact species’ responses to shifting habitat suitability. Additionally, it remains unclear if differences in vital rates across populations within a species can offset or exacerbate the effects of predicted changes in climatic suitability on population viability. In order to obtain a fuller understanding of the response of one species to projected climatic changes, we coupled demographic processes with predicted changes in suitable habitat for the monocarpic thistle Carlina vulgaris across northern Europe. We first developed a life history model with species‐specific average fecundity and survival rates and linked it to a SDM that predicted changes in habitat suitability through time with changes in climatic variables. We then varied the demographic parameters based upon observed vital rates of local populations from a translocation experiment. Despite the fact that the SDM alone predicted C. vulgaris to be a climate ‘winner’ overall, coupling the model with changes in demography and small‐scale habitat suitability resulted in a matrix of stable, declining, and increasing patches. For populations predicted to experience declines or increases in abundance due to changes in habitat suitability, altered fecundity and survival rates can reverse projected population trends.  相似文献   

2.

Background

Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms.

Methodology/Principal Findings

We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species.

Conclusion/Significance

While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO2 emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO2 emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands.  相似文献   

3.
Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate‐driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species‐specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate‐driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over‐predict suitable environmental space under future climatic conditions.  相似文献   

4.
The most common approach to predicting how species ranges and ecological functions will shift with climate change is to construct correlative species distribution models (SDMs). These models use a species’ climatic distribution to determine currently suitable areas for the species and project its potential distribution under future climate scenarios. A core, rarely tested, assumption of SDMs is that all populations will respond equivalently to climate. Few studies have examined this assumption, and those that have rarely dissect the reasons for intraspecific differences. Focusing on the arctic-alpine cushion plant Silene acaulis, we compared predictive accuracy from SDMs constructed using the species’ full global distribution with composite predictions from separate SDMs constructed using subpopulations defined either by genetic or habitat differences. This is one of the first studies to compare multiple ways of constructing intraspecific-level SDMs with a species-level SDM. We also examine the contested relationship between relative probability of occurrence and species performance or ecological function, testing if SDM output can predict individual performance (plant size) and biotic interactions (facilitation). We found that both genetic- and habitat-informed SDMs are considerably more accurate than a species-level SDM, and that the genetic model substantially differs from and outperforms the habitat model. While SDMs have been used to infer population performance and possibly even biotic interactions, in our system these relationships were extremely weak. Our results indicate that individual subpopulations may respond differently to climate, although we discuss and explore several alternative explanations for the superior performance of intraspecific-level SDMs. We emphasize the need to carefully examine how to best define intraspecific-level SDMs as well as how potential genetic, environmental, or sampling variation within species ranges can critically affect SDM predictions. We urge caution in inferring population performance or biotic interactions from SDM predictions, as these often-assumed relationships are not supported in our study.  相似文献   

5.
李佳  薛亚东  吴波  李迪强 《生态学报》2022,42(18):7484-7494
脆弱性是指物种受气候变化影响的程度,开展脆弱性评估工作有助于人类认识气候变化对野生动物的影响,为制定野生动物适应气候变化的保护对策提供科学依据。采用最大熵模型评估气候变化背景下秦岭地区羚牛(Budorcas taxicolor bedfordi)生境脆弱性。结果表明:(1)当前秦岭地区羚牛适宜生境总面积为6473 km2,到2050s年,预测秦岭地区羚牛适宜生境总面积为4217 km2,减少34.85%,羚牛适宜生境将向更高海拔地区转移,转移约210 m;(2)已建保护区覆盖49.82%当前羚牛适宜生境,尚有3248 km2的适宜生境处于保护区之外;到2050s年,保护区覆盖了43.87%适宜生境,尚有2367 km2的适宜生境未被保护;(3)到2050s年,当前分布在太白县、佛坪县、洋县和宁陕县等地区的3490 km2羚牛适宜生境将会成为生境脆弱区域,丧失53.92%;(4)分布在秦岭核心区域的2983 km2当前和2050s年保持不变适宜生境,将成为羚...  相似文献   

6.
Forecasting of species and ecosystem responses to novel conditions, including climate change, is one of the major challenges facing ecologists at the start of the 21st century. Climate change studies based on species distribution models (SDMs) have been criticized because they extend correlational relationships beyond the observed data. Here, we compared conventional climate‐based SDMs against ecohydrological SDMs that include information from process‐based simulations of water balance. We examined the current and future distribution of Artemisia tridentata (big sagebrush) representing sagebrush ecosystems, which are widespread in semiarid western North America. For each approach, we calculated ensemble models from nine SDM methods and tested accuracy of each SDM with a null distribution. Climatic conditions included current conditions for 1970–1999 and two IPCC projections B1 and A2 for 2070–2099. Ecohydrological conditions were assessed by simulating soil water balance with SOILWAT, a daily time‐step, multiple layer, mechanistic, soil water model. Under current conditions, both climatic and ecohydrological SDM approaches produced comparable sagebrush distributions. Overall, sagebrush distribution is forecasted to decrease, with larger decreases under the A2 than under the B1 scenario and strong decreases in the southern part of the range. Increases were forecasted in the northern parts and at higher elevations. Both SDM approaches produced accurate predictions. However, the ecohydrological SDM approach was slightly less accurate than climatic SDMs (?1% in AUC, ?4% in Kappa and TSS) and predicted a higher number of habitat patches than observed in the input data. Future predictions of ecohydrological SDMs included an increased number of habitat patches whereas climatic SDMs predicted a decrease. This difference is important for understanding landscape‐scale patterns of sagebrush ecosystems and management of sagebrush obligate species for future conditions. Several mechanisms can explain the diverging forecasts; however, we need better insights into the consequences of different datasets for SDMs and how these affect our understanding of future trajectories.  相似文献   

7.
Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree‐ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate‐based habitat suitability with volume measurements from ~50‐year‐old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree‐ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree‐ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as ?.31. We conclude that tree responses to projected climate change are highly site‐specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.  相似文献   

8.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   

9.
Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980–2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2–29% and 0.04–10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010–2099 time period related to consistent warming above the 1910–2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain P.albicaulis in the GYA under the more extreme future climate scenarios.  相似文献   

10.
We modeled current and future distribution of suitable habitat for the talus‐obligate montane mammal Ochotona princeps (American pika) across the western USA under increases in temperature associated with contemporary climate change, to: a) compare forecasts using only climate variables vs using those plus habitat considerations; b) identify possible patterns of range collapse (center vs margins, and large‐ vs small‐sized patches); and c) compare conservation and management implications of changes at two taxonomic resolutions, and using binned‐ vs binary‐probability maps. We used MaxEnt to analyze relationships between occurrence records and climatic variables to develop a bioclimatic‐envelope model, which we refined by masking with a deductive appropriate‐habitat filter based on suitable land‐cover types. We used this final species‐distribution model to predict distribution of suitable habitat under range‐wide temperature increases from 1 to 7°C, in 1°C increments; we also compared these results to distribution under IPCC‐forecasted climates for 2050 and 2080. Though all currently recognized lineages and traditionally defined subspecies were predicted to lose increasing amounts of habitat as temperatures rose, the most‐dramatic range losses were predicted to occur among traditional subspecies. Nineteen of the 31 traditional US pika subspecies were predicted to lose > 98% of their suitable habitat under a 7?C increase in the mean temperature of the warmest quarter of the year, and lineages were predicted to lose 88 95% of suitable habitat. Under a 4?C increase, traditional subspecies averaged a predicted 73% (range = 44–99%) reduction. The appropriate‐habitat filter removed 40–6% of the predicted climatically suitable pixels, in a stepped and monotonically decreasing fashion as predicted temperatures rose. Predicted range collapse proceeded until only populations in island‐biogeographic ‘mainlands’ remained, which were not in the geographic range center. We used this model system to illustrate possible distributional shifts under stepped changes in biologically relevant aspects of climate, importance of land cover and taxonomic level in species‐distribution forecasts, and impact of using a single threshold vs multiple categories of persistence probability in predicted range maps; we encourage additional research to further investigate the generality of these patterns.  相似文献   

11.
Habitat loss and climate change pose a double jeopardy for many threatened taxa, making the identification of optimal habitat for the future a conservation priority. Using a case study of the endangered Bornean orang‐utan, we identify environmental refuges by integrating bioclimatic models with projected deforestation and oil‐palm agriculture suitability from the 1950s to 2080s. We coupled a maximum entropy algorithm with information on habitat needs to predict suitable habitat for the present day and 1950s. We then projected to the 2020s, 2050s and 2080s in models incorporating only land‐cover change, climate change or both processes combined. For future climate, we incorporated projections from four model and emission scenario combinations. For future land cover, we developed spatial deforestation predictions from 10 years of satellite data. Refuges were delineated as suitable forested habitats identified by all models that were also unsuitable for oil palm – a major threat to tropical biodiversity. Our analyses indicate that in 2010 up to 260 000 km2 of Borneo was suitable habitat within the core orang‐utan range; an 18–24% reduction since the 1950s. Land‐cover models predicted further decline of 15–30% by the 2080s. Although habitat extent under future climate conditions varied among projections, there was majority consensus, particularly in north‐eastern and western regions. Across projections habitat loss due to climate change alone averaged 63% by 2080, but 74% when also considering land‐cover change. Refuge areas amounted to 2000–42 000 km2 depending on thresholds used, with 900–17 000 km2 outside the current species range. We demonstrate that efforts to halt deforestation could mediate some orang‐utan habitat loss, but further decline of the most suitable areas is to be expected given projected changes to climate. Protected refuge areas could therefore become increasingly important for ongoing translocation efforts. We present an approach to help identify such areas for highly threatened species given environmental changes expected this century.  相似文献   

12.
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning.  相似文献   

13.
The sensitivity of amphibian species to shifts in environmental conditions has been exhibited through long-term population studies and the projection of ecological niche models under expected conditions. Species in biodiversity hotspots have been the focus of ample predictive modeling studies, while, despite their significant ecological value, wide-ranging and common taxa have received less attention. We focused on predicting range restriction of the spotted salamander (Ambystoma maculatum), blue-spotted salamander (A. laterale), four-toed salamander (Hemidactylium scutatum), and red-backed salamander (Plethodon cinereus) under future climate scenarios. Using bias-corrected future climate data and biodiversity database records, we developed maximum entropy (MaxEnt) models under current conditions and for climate change projections in 2050 and 2070. We calculated positivity rates of species localities to represent proportions of habitat expected to remain climatically suitable with continued climate change. Models projected under future conditions predicted average positivity rates of 91% (89–93%) for the blue-spotted salamander, 23% (2–41%) for the spotted salamander, 4% (0.7–9%) for the four-toed salamander, and 61% (42–76%) for the red-backed salamander. Range restriction increased with time and greenhouse gas concentration for the spotted salamander, four-toed salamander, and red-backed salamander. Common, widespread taxa that often receive less conservation resources than other species are at risk of experiencing significant losses to their climatic ranges as climate change continues. Efforts to maintain populations of species should be focused on regions expected to experience fewer climatic shifts such as the interior and northern zones of species' distributions.  相似文献   

14.
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.  相似文献   

15.
One of the major uncertainties of 21st century climate change is the potential for shifts to the intensity and frequency of the El Niño Southern Oscillation (ENSO) cycle. Although this phenomenon is known to have dramatic impacts on ecosystems regionally and globally, the biological consequences of climate change‐driven shifts in future ENSO events have been unexplored. Here, we investigate the potential impacts that a persistent El Niño, La Niña, or ‘Neutral' phase may have on species distributions. Using MaxEnt, we model the distribution of climatically suitable habitat for three northeast Australian butterfly subspecies (Doleschallia bisaltide australis, Hypolimnas alimena lamina, and Mycalesis terminus terminus) across the three ENSO phases. We find that the spatial extent and quality of habitat are lowest under conditions that would characterize a persistent El Niño (hot/dry). In contrast, suitable habitat is broadest under the warm/wet conditions associated with La Niña. Statistical analyses of the difference between pair‐wise combinations of suitability maps using Hellinger distance showed that projections for each subspecies and ENSO phase combination were significantly different from other combinations. The resilience of these, and other, butterfly (sub)species to changes in ENSO will be influenced by fluctuations in the strength of these events, availability of refugia, and life‐history characteristics. However, the population dynamics of wet‐ and dry‐season phenotypes of M. t. terminus and physiological limitations to high temperatures suggest that this subspecies, in particular, may have limited resilience should the strength and frequency of El Niño events increase.  相似文献   

16.
Pittman SJ  Brown KA 《PloS one》2011,6(5):e20583
Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management.  相似文献   

17.
Species distribution models (SDMs) are often limited by the use of coarse-resolution environmental variables and by the number of observations required for their calibration. This is particularly true in the case of elusive animals. Here, we developed a SDM by combining three elements: a database of explanatory variables, mapped at a fine resolution; a systematic sampling scheme; and an intensive survey of indirect observations. Using MaxEnt, we developed the SDM for the population of the Asiatic wild ass (Equus hemionus), a rare and elusive species, at three spatial scales: 10, 100, and 1000 m per pixel. We used indirect observations of feces mounds. We constructed 14 layers of explanatory variables, in five categories: water, topography, biotic conditions, climatic variables and anthropogenic variables. Woody vegetation cover and slopes were found to have the strongest effect on the distribution of wild ass and were included as the main predictors in the SDM. Model validation revealed that an intensive survey of feces mounds and high-resolution predictor layers resulted in a highly accurate and informative SDM. Fine-grain (10 and 100 m) SDMs can be utilized to: (1) characterize the variables influencing species distribution at high resolution and local scale, including anthropogenic effects and geomorphologic features; (2) detect potential population activity centers; (3) locate potential corridors of movement and possible isolated habitat patches. Such information may be useful for the conservation efforts of the Asiatic wild ass. This approach could be applied to other elusive species, particularly large mammals.  相似文献   

18.
The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.  相似文献   

19.
Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution) which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local adaptations to cold temperatures deserved more attention in terms of modelling, but further in conservation planning as well.  相似文献   

20.
Assuming that co‐distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM‐based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5/RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of protected areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hot spots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate‐change models suggested (in comparison with the present distribution model) an increase in area of 3.0–10.0% and 3.0–9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long‐term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggest that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号