首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symmetric aromatic diselenides are potential anticancer agents with strong cytotoxic activity. In this study, the in vitro anticancer activities of a novel series of diarylseleno derivatives from the diphenyldiselenide (DPDS) scaffold were evaluated. Most of the compounds exhibited high efficacy for inducing cytotoxicity against different human cancer cell lines. DPDS 2 , the compound with the lowest mean GI50 value, induced both caspase‐dependent apoptosis and arrest at the G0/G1 phase in acute lymphoblastic leucemia CCRF‐CEM cells. Consistent with this, PARP cleavage; enhanced caspase‐2, ‐3, ‐8 and ‐9 activity; reduced CDK4 expression and increased levels of p53 were detected in these cells upon DPDS 2 treatment. Mutated p53 expressed in CCRF‐CEM cells retains its transactivating activity. Therefore, increased levels of p21CIP1 and BAX proteins were also detected. On the other hand, DPDS 6 , the compound with the highest selectivity index for cancer cells, resulted in G2/M cell cycle arrest and caspase‐independent cell death in p53 deficient HTB‐54 lung cancer cells. Autophagy inhibitors 3‐methyladenine, wortmannin and chloroquine inhibited DPDS 6 ‐induced cell death. Consistent with autophagy, increased LC3‐II and decreased SQSTM1/p62 levels were detected in HTB‐54 cells in response to DPDS 6 . Induction of JNK phosphorylation and a reduction in phospho‐p38 MAPK were also detected. Moreover, the JNK inhibitor SP600125‐protected HTB‐54 cells from DPDS 6 ‐induced cell death indicating that JNK activation is involved in DPDS 6 ‐induced autophagy. These results highlight the anticancer effects of these derivatives and warrant future studies examining their clinical potential.  相似文献   

2.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

3.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although understanding of the pathogenesis of PD remains incomplete, increasing evidence from human and animal studies has suggested that oxidative stress is an important mediator in its pathogenesis. Astaxanthin (Asx), a potent antioxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress‐related diseases. This study examined the protective effects of Asx on 6‐hydroxydopamine (6‐OHDA)‐induced apoptosis in the human neuroblastoma cell line SH‐SY5Y. Pre‐treatment of SH‐SY5Y cells with Asx suppressed 6‐OHDA‐induced apoptosis in a dose‐dependent manner. In addition, Asx strikingly inhibited 6‐OHDA‐induced mitochondrial dysfunctions, including lowered membrane potential and the cleavage of caspase 9, caspase 3, and poly(ADP‐ribose) polymerase. In western blot analysis, 6‐OHDA activated p38 MAPK, c‐jun NH2‐terminal kinase 1/2, and extracellular signal‐regulated kinase 1/2, while Asx blocked the phosphorylation of p38 MAPK but not c‐jun NH2‐terminal kinase 1/2 and extracellular signal‐regulated kinase 1/2. Pharmacological approaches showed that the activation of p38 MAPK has a critical role in 6‐OHDA‐induced mitochondrial dysfunctions and apoptosis. Furthermore, Asx markedly abolished 6‐OHDA‐induced reactive oxygen species generation, which resulted in the blockade of p38 MAPK activation and apoptosis induced by 6‐OHDA treatment. Taken together, the present results indicated that the protective effects of Asx on apoptosis in SH‐SY5Y cells may be, at least in part, attributable to the its potent antioxidative ability.  相似文献   

4.
Photodynamic therapy (PDT) with a recently developed photosensitizer Zn‐BC‐AM was found to effectively induce apoptosis in a well‐differentiated nasopharyngeal carcinoma (NPC) HK‐1 cell line. Sustained activation of p38 mitogen‐activated protein kinase (MAPK) and c‐jun N‐terminal kinase (JNK) as well as a transient increase in activation of extracellular signal‐regulated kinase (ERK) were observed immediately after Zn‐BC‐AM PDT. A commonly used p38 MAPK/JNK pharmacological inhibitor PD169316 was found to reduce PDT‐induced apoptosis of HK‐1 cells. PD169316 also prevented the loss of Bcl‐2 and Bcl‐xL in PDT‐treated HK‐1 cells. However, inhibition of JNK with SP600125 had no effect on Zn‐BC‐AM PDT‐induced apoptosis while inhibition of ERK with PD98059 or p38 MAPK with SB203580 significantly increased Zn‐BC‐AM PDT‐induced apoptosis. Further study showed that knockdown of the p38β isoform with siRNA also increased Zn‐BC‐AM PDT‐induced apoptosis, indicating that the anti‐apoptotic effect of PD169316 in PDT‐treated HK‐1 cells was probably independent of p38 MAPK or JNK activation. Taken together, the results suggest that inhibition of p38β and ERK may enhance the therapeutic efficacy of Zn‐BC‐AM PDT on NPC cells. It should be noted that data only based on the use of PD169316 should be interpreted in caution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
l ‐Glutamine (Gln) starvation rapidly triggers apoptosis in Sp2/0‐Ag14 (Sp2/0) murine hybridoma cells. Here, we report on the role played by the stress‐activated kinase p38 mitogen‐activated protein kinase (MAPK) in this process. p38 activation was detected 2 h after Gln withdrawal and, although treatment with the p38 inhibitor SB203580 did not prevent caspase activation in Gln‐starved cells, it reduced the occurrence of both nuclear condensation/fragmentation and apoptotic body formation. Similarly, transfection of Sp2/0 cells with a dominant negative p38 MAPK reduced the incidence of nuclear pyknosis and apoptotic body formation following 2 h of Gln starvation. Gln withdrawal‐induced apoptosis was blocked by the overexpression of the anti‐apoptotic protein Bcl‐xL or by the caspase inhibitor Z‐VAD‐fmk. Interestingly, Bcl‐xL expression inhibited p38 activation, but Z‐VAD‐fmk treatment did not, indicating that activation of this MAPK occurs downstream of mitochondrial dysfunction and is independent of caspases. Moreover, the anti‐oxidant N‐acetyl‐l ‐cysteine prevented p38 phosphorylation, showing that p38 activation is triggered by an oxidative stress. Altogether, our findings indicate that p38 MAPK does not contribute to the induction of apoptosis in Gln‐starved Sp2/0 cells. Rather, Gln withdrawal leads to mitochondrial dysfunction, causing an oxidative stress and p38 activation, the latter contributing to the formation of late morphological features of apoptotic Sp2/0 cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Serum deprivation induces apoptosis in NIH3T3 cells, which is associated with increased intracellular ceramide generation and with the activation of p38 mitogen-activated protein (MAP) kinase. Treatment of cells with transforming growth factor-beta1 (TGF-beta1) activated the extracellular signal regulated kinases 1 and 2 (ERK1/ERK2), inhibited the serum deprivation-induced p38 activation and the increase in intracellular ceramide formation, leading to the stimulation of cell proliferation and the suppression of apoptosis. Inhibition of p38 MAP kinase by SB203580 significantly reduced the serum-deprivation-induced apoptosis. Overexpression of p38 increased the cell apoptosis and reduced the antiapoptotic effect of TGF-beta1. Inhibition of ERK1/ERK2 by PD98059 completely inhibited the TGF-beta1-stimulated proliferation and partially inhibited the antiapoptotic effects of TGF-beta1. Neither SB203580 nor PD98059 has obvious effect on TGF-beta1-mediated inhibition of the increased ceramide generation. Serum-deprivation-induced apoptosis in NIH3T3 cells can also be blocked by broad-spectrum caspase inhibitor. TGF-beta1 treatment has an inhibitory effect on caspase activities. Our results indicate that ceramide, p38, and ERK1/ERK2 play critical but differential roles in cell proliferation and stress-induced apoptosis. TGF-beta1 suppresses the serum-deprivation-induced apoptosis via its distinct effects on complex signaling events involving the activation of ERK1/ERK2 and the inhibition of p38 activation and increased ceramide generation.  相似文献   

7.
8.
Berberine (BBR) has indicated significant antimicrobial activity against a variety of organisms including bacteria, viruses, and fungi. The mechanism by which BBR initiates apoptosis remains poorly understood. In the present study, we demonstrated that BBR exhibited significant cytotoxicity in human hepatoma HepG2 cells. Herein, we investigated cytotoxicity mechanism of BBR in HepG2 cells. The results showed that the induction of apoptosis in HepG2 cells by BBR was characterized by DNA fragmentation, an increased percentage of annexin V, and the activation of caspase‐3. The expressions of Bcl‐2 protein and pro‐caspase‐3 were reduced by BBR in HepG2 cells. However, Bax protein was increased in the cells. BBR‐induced apoptosis was preceded by increased generation of reactive oxygen species (ROS). NAC treatment, a scavenger of ROS, reversed BBR‐induced apoptosis effects via inhibition of Bax activation and Bcl‐2 inactivation. BBR‐induced, dose‐dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP Kinases (JNK and p38 MAPK), ASK1, Akt, and p53. Furthermore, SB203580, p38 inhibitor, reduced the apoptotic effect of BBR, and blocks the generation of ROS and NO as well as activation of Bax. We found that the treatment of HepG2 cells with BBR triggers generation of ROS through Akt phosphorylation, resulting in dissociation of the ASK1‐mediated activation of JNK and p38 pathways. J. Cell. Biochem. 109: 329–338, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Ceramide causes either apoptosis or non-apoptotic cell death depending on model system and experimental conditions. The present study was undertaken to examine the effect of ceramide on cell viability and its molecular events leading to cell death in A172 human glioma cells. Ceramide induced cell death in a dose-dependent manner and the cell death was dependent on generation of reactive oxygen species and lipid peroxidation. TUNEL assay, Hoechst 33258 staining, and flow cytometric analysis did not show typical apoptotic morphological features. Ceramide caused phosphorylation of extracellular signal-regulated kinase (ERK) and p38, but the cell death was not affected by inhibitors of MAPK subfamilies. Ceramide caused ATP depletion without loss of mitochondrial membrane potential. Ceramide did not induce caspase activation and ceramide-induced cell death was also not altered by inhibitors of caspase activation. Transfection of dominant inhibitory mutant of IκBα (S32A/36A) and pretreatment of pyrrolidinedithiocarbamate, an inhibitor of NF-κB, enhanced ceramide-induced cell death. These results indicate that ceramide causes non-apoptotic, caspase-independent cell death by inducing reactive oxygen species generation in A172 human glioma cells. NF-κB is involved in the regulation of ceramide-induced cell death in human glioma cells.  相似文献   

10.
Previously, we demonstrated that the extracellular signal‐regulated kinase (ERK)‐mediated pathway contributes to the terbinafine (TB)‐induced increases of p21 and p53 protein level as well as decrease of DNA synthesis in human umbilical venous endothelial cells (HUVEC). The aim of this study is to examine the involvement of c‐Jun NH2‐terminal kinase (JNK) in the TB‐induced increase of p21 protein level and DNA synthesis inhibition. Western blot analysis and kinase assay demonstrated that TB treatment increased both the protein level and the kinase activity of JNK1/2 in HUVEC. Transfection of HUVEC with JNK1 dominant negative (DN‐JNK1) prevented the TB‐induced increases of p21 and p53 protein level and decrease of DNA synthesis, suggesting that JNK1/2 activation is involved in the TB‐induced cell cycle arrest in HUVEC. Moreover, over‐expression of mitogen‐activated protein kinase (MEK)‐1 prevented the TB‐induced increase of JNK1/2 protein levels, suggesting that MEK‐1 is an upstream inhibitor of JNK. Transfection of HUVEC with DN‐JNK1 prevented the TB‐induced inhibition of ERK phosphorylation, suggesting that JNK1/2 might serve as a negative regulator of ERK. Taken together, our results suggest that JNK activation is involved in the TB‐induced inhibition of ERK phosphorylation, p53 and p21 up‐regulation and DNA synthesis inhibition in HUVEC. J. Cell. Biochem. 108: 860–866, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Endothelial injury or dysfunction is an early event in the pathogenesis of atherosclerosis. Epidemiological and animal studies have shown that 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD) exposure increases morbidity and mortality from chronic cardiovascular diseases, including atherosclerosis. However, whether or how TCDD exposure causes endothelial injury or dysfunction remains largely unknown. Cultured human umbilical vein endothelial cells (HUVECs) were exposed to different doses of TCDD, and cell apoptosis was examined. We found that TCDD treatment increased caspase 3 activity and apoptosis in HUVECs in a dose‐dependent manner,at doses from 10 to 40 nM. TCDD increased cyclooxygenase enzymes (COX)‐2 expression and its downstream prostaglandin (PG) production (mainly PGE2 and 6‐keto‐PGF) in HUVECs. Interestingly, inhibition of COX‐2, but not COX‐1, markedly attenuated TCDD‐triggered apoptosis in HUVECs. Pharmacological inhibition or gene silencing of the PGE2 receptor subtype 3 (EP3) suppressed the augmented apoptosis in TCDD‐treated HUVECs. Activation of the EP3 receptor enhanced p38 MAPK phosphorylation and decreased Bcl‐2 expression following TCDD treatment. Both p38 MAPK suppression and Bcl‐2 overexpression attenuated the apoptosis in TCDD‐treated HUVECs. TCDD increased EP3‐dependent Rho activity and subsequently promoted p38MAPK/Bcl‐2 pathway‐mediated apoptosis in HUVECs. In addition, TCDD promoted apoptosis in vascular endothelium and delayed re‐endothelialization after femoral artery injury in wild‐type (WT) mice, but not in EP3?/? mice. In summary, TCDD promotes endothelial apoptosis through the COX‐2/PGE2/EP3/p38MAPK/Bcl‐2 pathway. Given the cardiovascular hazard of a COX‐2 inhibitor, our findings indicate that the EP3 receptor and its downstream pathways may be potential targets for prevention of TCDD‐associated cardiovascular diseases.  相似文献   

12.
The epidermal growth factor receptor ( EGFR ) is an important regulator of normal growth and differentiation, and it is involved in the pathogenesis of many cancers. Endocytic downregulation is central in terminating EGFR signaling after ligand stimulation. It has been shown that p38 MAPK activation also can induce EGFR endocytosis. This endocytosis lacks many of the characteristics of ligand‐induced EGFR endocytosis. We compared the two types of endocytosis with regard to the requirements for proteins in the internalization machinery. Both types of endocytosis require clathrin, but while epidermal growth factor (EGF) ‐induced EGFR internalization also required Grb 2 , p38 MAPK ‐induced internalization did not. Interestingly , AP ‐2 knock down blocked p38 MAPK ‐induced EGFR internalization, but only mildly affected EGF ‐induced internalization. In line with this, simultaneously mutating two AP ‐2 interaction sites in EGFR affected p38 MAPK ‐induced internalization much more than EGF ‐induced EGFR internalization. Thus, it seems that EGFR in the two situations uses different sets of internalization mechanisms.  相似文献   

13.
Cyclooxygenase-2 (COX-2) content is increased in many types of tumor cells. We have investigated the mechanism by which resveratrol, a stilbene that is pro-apoptotic in many tumor cell lines, causes apoptosis in human head and neck squamous cell carcinoma UMSCC-22B cells by a mechanism involving cellular COX-2. UMSCC-22B cells treated with resveratrol for 24 h, with or without selected inhibitors, were examined: (1) for the presence of nuclear activated ERK1/2, p53 and COX-2, (2) for evidence of apoptosis, and (3) by chromatin immunoprecipitation to demonstrate p53 binding to the p21 promoter. Stilbene-induced apoptosis was concentration-dependent, and associated with ERK1/2 activation, serine-15 p53 phosphorylation and nuclear accumulation of these proteins. These effects were blocked by inhibition of either ERK1/2 or p53 activation. Resveratrol also caused p53 binding to the p21 promoter and increased abundance of COX-2 protein in UMSCC-22B cell nuclei. Resveratrol-induced nuclear COX-2 accumulation was dependent upon ERK1/2 activation, but not p53 activation. Activation of p53 and p53-dependent apoptosis were blocked by the COX-2 inhibitor, NS398, and by transfection of cells with COX-2-siRNA. In UMSCC-22B cells, resveratrol-induced apoptosis and induction of nuclear COX-2 accumulation share dependence on the ERK1/2 signal transduction pathway. Resveratrol-inducible nuclear accumulation of COX-2 is essential for p53 activation and p53-dependent apoptosis in these cancer cells.  相似文献   

14.
We investigated the ceramide-induced apoptosis and potential mechanism in A-431 cells. Ceramide treatment causes the round up and the death of A-431 cells that is associated with p38 activation and can be observed in 10 h. Short-time ceramide treatment-induced cell death is not associated with the typical apoptotic phenotypes, such as the translocation of phosphatidylserine (PS) from inner layer to outer layer of the plasma membrane, loss of mitochondrial membrane potential, DNA fragmentation, caspase activation, and PARP or PKC-delta degradation. SB202190, a specific inhibitor of p38 mitogen-activated protein (MAP) kinase, but not caspase inhibitor, blocks the cell death induced by short-time ceramide treatment (within 12 h). Whereas neither inhibition of p38 MAP kinase nor inhibition of caspases blocks cell death induced by prolonged ceramide treatment. Moreover, incubation of cells with ceramide for a long time (over 12 h) results in the reduction of proportion of S phase accompanied with typical apoptotic cell death phenotypes that are different from the cell death induced by short-time ceramide treatment. Our data demonstrated that ceramide-induced apoptotic cell death involves both caspase-dependent and caspase-independent signaling pathways. The caspase-independent cell death that occurred in relatively early stage of ceramide treatment is mediated via p38 MAP kinase, which can progress into a stage that is associated with changes of cell cycle events and involves both caspase-dependent and -independent mechanisms.  相似文献   

15.
Ceramide has been implicated as an intermediate in the signal transduction of several cytokines including tumor necrosis factor (TNF). Both ceramide and TNF activate a wide variety of cellular responses, including NF-kappaB, AP-1, JNK, and apoptosis. Whether ceramide transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56(lck) in ceramide- and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, isogeneic Lck-deficient T cells. Treatment with ceramide activated NF-kappaB, degraded IkappaBalpha, and induced NF-kappaB-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56(lck) kinase. These effects were specific to ceramide, as activation of NF-kappaB by phorbol 12-myristate 13-acetate, lipopolysaccharide, H(2)O(2), and TNF was minimally affected. p56(lck) was also found to be required for ceramide-induced but not TNF-induced AP-1 activation. Similarly, ceramide activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. Ceramide also induced cytotoxicity and activated caspases and reactive oxygen intermediates in Jurkat cells but not in JCaM1 cells. Ceramide activated p56(lck) activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56(lck) tyrosine kinase reversed the ceramide-induced NF-kappaB activation and cytotoxicity. Overall our results demonstrate that p56(lck) plays a critical role in the activation of NF-kappaB, AP-1, JNK, and apoptosis by ceramide but has minimal or no role in activation of these responses by TNF.  相似文献   

16.
Doxorubicin (0.5 microgram/ml) induced caspase-dependent apoptosis in SH-SY5Y neuroblastoma and CHP-100 neuroepithelioma cells. The apoptotic response started to be evident approximately 15 h after drug administration and, as monitored over a 48-h period, was more pronounced in CHP-100 than in SH-SY5Y cells. In both systems, apoptosis was accompanied by elevation of intracellular ceramide levels. Ceramide accumulation was blocked by the ceramide synthase inhibitor fumonisin B(1) (25 microM); this compound, however, did not prevent drug-induced apoptosis. Untreated cells from both lines expressed negligible p53 levels; on the other hand, whereas p53 and p21(Cip1/Waf1) were rapidly up-regulated in doxorubicin-treated SH-SY5Y cells, such a response was not observed in CHP-100 cells. Doxorubicin induced a G(2)/M phase block in both cell lines, but whereas the G(1) phase was markedly depleted in CHP-100 cells, it was substantially retained in SH-SY5Y cells. In the latter system, double G(1) and G(2)/M block largely preceded cell death; however, as apoptosis underwent completion, it selectively targeted late S and G(2)/M cells. Moreover, apoptosis suppression by caspase inhibition did not result in a recovery of the G(1) cell population. These results support the notion that doxorubicin-induced apoptosis and ceramide elevation are divorced events in neuroectodermal tumors and that p53 function is at least dispensable for apoptosis completion. Indeed, as G(1) cells appear to be refractory to doxorubicin-induced apoptosis, p53 up-regulation and p21(Cip1/Waf1) expression may provide an unfavorable setting for the apoptotic action of the drug.  相似文献   

17.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

18.
This study aimed to uncover the protective potentiality of resveratrol and dimethyl fumarate (DMF) in the liver of a chronic unpredictable mild stress (CUMS)‐induced depression animal model. Resveratrol and DMF significantly alleviated CUMS‐induced behavioral abnormalities in stressed rats through improving sucrose preference in sucrose preference test and decreasing immobility time in a forced swimming test. They also mitigated serum corticosterone levels and elevated serum serotonin levels, which were formerly disturbed in CUMS rats. The hepatoprotective effect is evidenced by improvement in hepatic histopathological examinations, as well as normalized serum alanine aminotransferase and aspartate aminotransferase activities. Molecular signaling of resveratrol and DMF was estimated by diminishing hepatic expression of phosphorylated p38 mitogen‐activated protein kinase (MAPK), extracellular signal‐regulated kinase1/2 (ERK1/2), and c‐Jun N‐terminal kinase (JNK). Consequently, they improved the hepatic antioxidant and anti‐inflammatory activities as elaborated by the normalization of total antioxidant capacity, glutathione, malondialdehyde, nuclear factor‐κB, tumor necrosis factor‐α, and myeloperoxidase levels. In addition, they inhibited hepatocyte apoptosis as evidenced by the increased expression of B‐cell lymphoma 2, the decreased expression of Bax, as well as the suppressed activity of caspase‐3. In conclusion, resveratrol and DMF purveyed a significant anti‐depressant effect, which may be mediated, at least in part, via inhibiting the MAPK/ERK/JNK pathway in the CUMS rat model.  相似文献   

19.
Hyperhomocysteinemia is an independent risk factor for both acute and chronic neurological disorders, but little is known about the underlying mechanisms by which elevated homocysteine can promote neuronal cell death. We recently established a role for NMDA receptor‐mediated activation of extracellular signal‐regulated kinase (ERK)‐MAPK in homocysteine‐induced neuronal cell death. In this study, we examined the involvement of the stress‐induced MAPK, p38 in homocysteine‐induced neuronal cell death, and further explored the relationship between the two MAPKs, ERK and p38, in triggering cell death. Homocysteine‐mediated NMDA receptor stimulation and subsequent Ca2+ influx led to a biphasic activation of p38 MAPK characterized by an initial rapid, but transient activation followed by a delayed and more prolonged response. Selective inhibition of the delayed p38 MAPK activity was sufficient to attenuate homocysteine‐induced neuronal cell death. Using pharmacological and RNAi approaches, we further demonstrated that both the initial and delayed activation of p38 MAPK is downstream of, and dependent on activation of ERK MAPK. Our findings highlight a novel interplay between ERK and p38 MAPK in homocysteine‐NMDA receptor‐induced neuronal cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号