首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitraria retusa (Forssk.) Asch. was subjected to botanical and chemical studies and compared against four selected taxa of Zygophyllaceae viz., Fagonia arabica L., Peganum harmala L., Tribulus terrestris L. and Zygophyllum album L.f. The botanical section included the study of morphological and anatomical characters of both vegetative and reproductive organs using LM and scanning electron microscope. The chemical section included a detailed study of the flavonoids present in N. retusa. Twelve compounds were isolated and identified as flavone, flavonol O-glycosides and flavone C-glycosides. Flavonoid patterns from N. retusa (Forssk.) Asch. of the selected taxa Zygophyllaceae were surveyed through HPLC and correlated with morphological and anatomical criteria.  相似文献   

2.

Background and Aims

Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance.

Methods

In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD.

Key Results

Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4′-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths.

Conclusions

The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf.  相似文献   

3.
The enhanced understanding of chloroplast genomics would facilitate various biotechnology applications; however, the chloroplast (cp) genome / plastome characteristics of plants like Fagonia indica Burm.f. (family Zygophyllaceae), which have the capability to grow in extremely hot sand desert, have been rarely understood. The de novo genome sequence of F. indica using the Illumina high-throughput sequencing technology determined 128,379 bp long cp genome, encode 115 unique coding genes. The present study added the evidence of the loss of a copy of the IR in the cp genome of the taxa capable to grow in the hot sand desert. The maximum likelihood analysis revealed two distinct sub-clades i.e. Krameriaceae and Zygophyllaceae of the order Zygophyllales, nested within fabids.  相似文献   

4.
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure–activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.  相似文献   

5.
The natural flavonoids, especially their glycosides, are the most abundant polyphenols in foods and have diverse bioactivities. The biotransformation of flavonoid aglycones into their glycosides is vital in flavonoid biosynthesis. The main biological strategies that have been used to achieve flavonoid glycosylation in the laboratory involve metabolic pathway engineering and microbial biotransformation. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoid glycosides using biotechnology, as well as the impact of glycosylation on flavonoid bioactivity. Uridine diphosphate glycosyltransferases play key roles in decorating flavonoids with sugars. Modern metabolic engineering and proteomic tools have been used in an integrated fashion to generate numerous structurally diverse flavonoid glycosides. In vitro, enzymatic glycosylation tends to preferentially generate flavonoid 3- and 7-O-glucosides; microorganisms typically convert flavonoids into their 7-O-glycosides and will produce 3-O-glycosides if supplied with flavonoid substrates having a hydroxyl group at the C-3 position. In general, O-glycosylation reduces flavonoid bioactivity. However, C-glycosylation can enhance some of the benefits of flavonoids on human health, including their antioxidant and anti-diabetic potential.  相似文献   

6.

Background

The aim of our research work was to quantify total flavonoid contents in the leaves of 13 plant species family Asteraceae, 8 representatives of family Lamiaceae and 9 plant species belonging to family Rosaceae, using the multiplex fluorimetric sensor. Fluorescence was measured using optical fluorescence apparatus Multiplex(R) 3 (Force-A, France) for non-destructive flavonoids estimation. The content of total flavonoids was estimated by FLAV index (expressed in relative units), that is deduced from flavonoids UV absorbing properties.

Results

Among observed plant species, the highest amount of total flavonoids has been found in leaves of Helianthus multiflorus (1.65 RU) and Echinops ritro (1.27 RU), Rudbeckia fulgida (1.13 RU) belonging to the family Asteraceae. Lowest flavonoid content has been observed in the leaves of marigold (Calendula officinalis) (0.14 RU) also belonging to family Asteraceae. The highest content of flavonoids among experimental plants of family Rosaceae has been estimated in the leaves of Rosa canina (1.18 RU) and among plant species of family Lamiaceae in the leaves of Coleus blumei (0.90 RU).

Conclusions

This research work was done as pre-screening of flavonoids content in the leaves of plant species belonging to family Asteraceae, Lamiaceae and Rosaceae. Results indicated that statistically significant differences (P > 0.05) in flavonoids content were observed not only between families, but also among individual plant species within one family.  相似文献   

7.
Modern pollen records have been used to successfully distinguish between specific prairie types in North America. Whether the pollen records can be used to detect the occurrence of Eurasian steppe, or even to further delimit various steppe types was until now unclear. Here we characterized modern pollen assemblages of meadow steppe, typical steppe and desert steppe from eastern Eurasia along an ecological humidity gradient. The multivariate ordination of the pollen data indicated that Eurasian steppe types could be clearly differentiated. The different steppe types could be distinguished primarily by xerophilous elements in the pollen assemblages. Redundancy analysis indicated that the relative abundances of Ephedra, Tamarix, Nitraria and Zygophyllaceae were positively correlated with aridity. The relative abundances of Ephedra increased from meadow steppe to typical steppe and desert steppe. Tamarix and Zygophyllaceae were found in both typical steppe and desert steppe, but not in meadow steppe. Nitraria was only found in desert steppe. The relative abundances of xerophilous elements were greater in desert steppe than in typical steppe. These findings indicate that Eurasian steppe types can be differentiated based on recent pollen rain.  相似文献   

8.
采用薄层层析和高效毛细管电泳(HPCE)等方法,对中国蒺藜科5属的代表性植物中的黄酮类成分进行了分析研究,并结合其它分类学性状进行了初步讨论,我们同意(1)支持Engler(1931)骆驼蓬亚科(Peganoideae)地位;(2)支持Takhtajan(1987)白刺科(Nitrariaceae)的恢复;(3)支持EI-Hadidi(1977)刺蒺藜科(Tribulaceae)的建立。  相似文献   

9.
Pollastri S  Tattini M 《Annals of botany》2011,108(7):1225-1233

Background

New roles for flavonoids, as developmental regulators and/or signalling molecules, have recently been proposed in eukaryotic cells exposed to a wide range of environmental stimuli. In plants, these functions are actually restricted to flavonols, the ancient and widespread class of flavonoids. In mosses and liverworts, the whole set of genes for flavonol biosynthesis – CHS, CHI, F3H, FLS and F3′H – has been detected. The flavonol branch pathway has remained intact for millions of years, and is almost exclusively involved in the responses of plants to a wide array of stressful agents, despite the fact that evolution of flavonoid metabolism has produced >10 000 structures.

Scope

Here the emerging functional roles of flavonoids in the responses of present-day plants to different stresses are discussed based on early, authoritative views of their primary functions during the colonization of land by plants. Flavonols are not as efficient as other secondary metabolites in absorbing wavelengths in the 290–320 nm spectral region, but display the greatest potential to keep stress-induced changes in cellular reactive oxygen species homeostasis under control, and to regulate the development of individual organs and the whole plant. Very low flavonol concentrations, as probably occurred in early terrestrial plants, may fully accomplish these regulatory functions.

Conclusions

During the last two decades the routine use of genomic, chromatography/mass spectrometry and fluorescence microimaging techniques has provided new insights into the regulation of flavonol metabolism as well as on the inter- and intracellular distribution of stress-responsive flavonols. These findings offer new evidence on how flavonols may have performed a wide array of functional roles during the colonization of land by plants. In our opinion this ancient flavonoid class is still playing the same old and robust roles in present-day plants.  相似文献   

10.
11.
Tomato fruits (Solanum lycopersicum L.) accumulate flavonoids in their cuticle and epidermal cells during ripening. These flavonoids come from de novo biosynthesis due to a significant increase in chalcone synthase (CHS) activity during ripening. Virus-induced gene silencing (VIGS) of tomato fruits have been used to down-regulate SlCHS expression during ripening and analyze the effects at the epidermal and cuticle level. Besides the expected change in fruit color due to a lack of flavonoids incorporated to the cuticle, several other modifications such as a decrease in the amount of cutin and polysaccharides were observed. These indicate a role for either flavonoids or CHS in the alteration of the expression levels of some genes involved in cuticle biosynthesis. Moreover, a negative interaction between the 2 cuticle components, flavonoids and waxes, suggests a relationship between these 2 metabolic pathways.  相似文献   

12.
Plants in suburban forests of eastern North America face the dual stressors of high white‐tailed deer density and invasion by nonindigenous plants. Chronic deer herbivory combined with strong competition from invasive plants could alter a plant''s stress‐ and defense‐related secondary chemistry, especially for long‐lived juvenile trees in the understory, but this has not been studied. We measured foliar total antioxidants, phenolics, and flavonoids in juveniles of two native trees, Fraxinus pennsylvanica (green ash) and Fagus grandifolia (American beech), growing in six forests in the suburban landscape of central New Jersey, USA. The trees grew in experimental plots subjected for 2.5 years to factorial treatments of deer access/exclosure × addition/no addition of the nonindigenous invasive grass Microstegium vimineum (Japanese stiltgrass). As other hypothesized drivers of plant secondary chemistry, we also measured nonstiltgrass herb layer cover, light levels, and water availability. Univariate mixed model analysis of the deer and stiltgrass effects and multivariate structural equation modeling (SEM) of all variables showed that both greater stiltgrass cover and greater deer pressure induced antioxidants, phenolics, and flavonoids, with some variation between species. Deer were generally the stronger factor, and stiltgrass effects were most apparent at high stiltgrass density. SEM also revealed that soil dryness directly increased the chemicals; deer had additional positive, but indirect, effects via influence on the soil; in beech photosynthetically active radiation (PAR) positively affected flavonoids; and herb layer cover had no effect. Juvenile trees’ chemical defense/stress responses to deer and invasive plants can be protective, but also could have a physiological cost, with negative consequences for recruitment to the canopy. Ecological implications for species and their communities will depend on costs and benefits of stress/defense chemistry in the specific environmental context, particularly with respect to invasive plant competitiveness, extent of invasion, local deer density, and deer browse preferences.  相似文献   

13.
The desert plant Zygophyllum dumosum displays unique epigenetic constraints, not found in other perennial desert plants, namely, it possesses mono- but not di- and tri-methylated histone H3 at lysine 9 (H3K9). We investigated the proposal that lack of dimethylated H3K9 (H3K9me2) is not restricted to Z. dumosum, but a feature uniquely evolved in the Zygophyllaceae. To this end, we analyzed the state of H3K9me2 in various species including Z. simplex (annual), Peganum harmala (hemicryptophyte), Nitraria retusa (shrub) and Balanites aegyptiaca (tree) from the Negev Desert (Israel) and Larrea tridentata (creosote bush), a prominent species in the Mojave, Sonoran, and Chihuahuan Deserts of western North America. All but one of these plants showed dimethylation of H3 at lysine 4 (H3K4me2), but no detectable levels of H3K9me2. The exception was Nitraria retusa, recently separated from the Zygophyllaceae family, which possesses H3K9me2, further supporting its partition into a distinct family (Nitrariaceae). Interestingly, the analysis of Krameria cistoidea (Krameriaceae), which is listed under the Zygophyllales, showed the presence of H3K9me2. It appears that lack of H3K9me2 has uniquely evolved in the Zygophyllaceae (sensu stricto), suggesting that this phenomenon has a strong genetic background. Thus, epigenetic information revealed for Zygophyllaceae can be useful to phylogenetic approaches.  相似文献   

14.
Despite their strong role in human health, poor bioavailability of flavonoids limits their biological effects in vivo. Enzymatically catalyzed acylation of fatty acids to flavonoids is one of the approaches of increasing cellular permeability and hence, biological activities. In this study, six long chain fatty acid esters of quercetin-3-O-glucoside (Q3G) acylated enzymatically and were used for determining their antiproliferative action in hepatocellular carcinoma cells (HepG2) in comparison to precursor compounds and two chemotherapy drugs (Sorafenib and Cisplatin). Fatty acid esters of Q3G showed significant inhibition of HepG2 cell proliferation by 85 to 90% after 6 h and 24 h of treatment, respectively. The cell death due to these novel compounds was associated with cell-cycle arrest in S-phase and apoptosis observed by DNA fragmentation, fluorescent microscopy and elevated caspase-3 activity and strong DNA topoisomerase II inhibition. Interestingly, Q3G esters showed significantly low toxicity to normal liver cells than Sorafenib (P < 0.05), a chemotherapy drug for hepatocellular carcinoma. Among all, oleic acid ester of Q3G displayed the greatest antiproliferation action and a high potential as an anti-cancer therapeutic. Overall, the results of the study suggest strong antiproliferative action of these novel food-derived compounds in treatment of cancer.  相似文献   

15.
Flavonoid binding to human serum albumin   总被引:1,自引:0,他引:1  
Dietary flavonoid may have beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is often poor probably due to their interaction with plasma proteins. Here, the affinity of daidzein and daidzein metabolites as well as of genistein, naringenin, and quercetin for human serum albumin (HSA) has been assessed in the absence and presence of oleate. Values of the dissociation equilibrium constant (K) for binding of flavonoids and related metabolites to Sudlow’s site I range between 3.3 × 10−6 and 3.9 × 10−5 M, at pH 7.0 and 20.0 °C, indicating that these flavonoids are mainly bound to HSA in vivo. Values of K increase (i.e., the flavonoid affinity decreases) in the presence of saturating amounts of oleate by about two folds. Present data indicate a novel role of fatty acids as allosteric inhibitors of flavonoid bioavailability, and appear to be relevant in rationalizing the interference between dietary compounds, food supplements, and drugs.  相似文献   

16.
Analysis of species representing most sections of all the genera in the family Polemoniaceae showed a range of variation in flavonoids comparable to variation already documented for gross morphological features, karyotypes and pollen grains. Three main groups of flavonoids predominate: (A) common flavonols (kaempferol, quercetin, myricetin); (B) 6-methoxyflavonols (patuletin, eupalitin, eupatolitin); and (C) C-glycosylflavones (apigenin and luteolin based). Cobaea, Loeselia], Polemonium, Allophyllum, Collomia and Gymnosteris have predominantly Group A flavonoids; Bonplandia, Ipomopsis and Eriastrum have predominantly Group B flavonoids; Phlox, Microsteris and Leptodactylon have predominantly Group C flavonoids; while the remaining genera (Cantua, Huthia, Gilia, Langloisia, Navarretia and Linanthus) either have flavonoids of all three groups, or some species within a genus have flavonoids of one group, while other species have flavonoids of another group. Linanthus, Gilia and Navarretia (3 of the larger genera in the family) show great flavonoid diversity, while Langloisia (4 species) has 2 species with Group A flavonoids and the other two species have Group B pigments. Two rare hydroxycoumarins, one being daphnetin, were detected in five genera but they proved to be only of limited systematic interest.  相似文献   

17.
钟灵允  赵钢  赵江林 《广西植物》2021,41(6):1021-1034
荞麦属植物资源丰富,且富含黄酮类成分.通过文献查阅,总结了荞麦黄酮历年研究情况以及热点研究领域.荞麦黄酮研究论文最早发表于1952年,在1952—1999近五十年的时间内,荞麦黄酮的研究论文较少,年发文量少于10篇,荞麦黄酮的研究处于起步阶段.自2000年后,荞麦黄酮逐渐获得更多研究学者的关注,年度发文量逐年上升.近年...  相似文献   

18.
19.
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3′-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3′-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity.  相似文献   

20.
Flavonoids, naturally occurring phenolic compounds, have recently been studied extensively for their antioxidant properties. The structure–antioxidant activity relationships (SAR) of flavonoids have been evaluated against different free radicals, but “ferric reducing antioxidant power” (FRAP) assay, which determines directly the reducing capacity of a compound, has not been used for this purpose. In this study, the antioxidant activities of 18 structurally different flavonoids were evaluated by FRAP assay modified to be used in 96-well microplates. Furthermore, their oxidation potentials were also measured, which were in the range of +0.3 V (myricetin) to +1.2 V (5-hydroxy flavone) and were in good agreement with FRAP assay results. Quercetin, fisetin and myricetin had the lowest oxidation potentials and appeared the most active compounds in FRAP assay and were 3.02, 2.52 and 2.28 times more active than Trolox, respectively. Indications were found that the o-dihydroxy structure in the B ring and the 3-hydroxy group and 2,3-double bond in the C ring give the highest contribution to the antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号