首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterospecific mating frequency is critical to hybrid zone dynamics and can directly impact the strength of reproductive barriers and patterns of introgression. The effectiveness of post‐mating prezygotic (PMPZ) reproductive barriers, which include reduced fecundity via heterospecific matings and conspecific sperm precedence, may depend on the number, identity and order of mates. Studies of PMPZ barriers suggest that they may be important in many systems, but whether these barriers are effective at realistic heterospecific mating frequencies has not been tested. Here, we evaluate the strength of cryptic reproductive isolation in two leaf beetles (Chrysochus auratus and C. cobaltinus) in the context of a range of heterospecific mating frequencies observed in natural populations. We found both species benefited from multiple matings, but the benefits were greater in C. cobaltinus and extended to heterospecific matings. We found that PMPZ barriers greatly limited hybrid production by C. auratus females with moderate heterospecific mating frequencies, but that their effectiveness diminished at higher heterospecific mating frequencies. In contrast, there was no evidence for PMPZ barriers in C. cobaltinus females at any heterospecific mating frequency. We show that integrating realistic estimates of cryptic isolation with information on relative abundance and heterospecific mating frequency in the field substantially improves our understanding of the strong directional bias in F1 production previously documented in the Chrysochus hybrid zone. Our results demonstrate that heterospecific mating frequency is critical to understanding the impact of cryptic post‐copulatory barriers on hybrid zone structure and dynamics, and that future studies of such barriers should incorporate field‐relevant heterospecific mating frequencies.  相似文献   

2.
Inaccurate taxonomic assessment of threatened populations can hinder conservation prioritization and management, with human‐mediated population movements obscuring biogeographic patterns and confounding reconstructions of evolutionary history. Giant salamanders were formerly distributed widely across China, and are interpreted as a single species, Andrias davidianus. Previous phylogenetic studies have identified distinct Chinese giant salamander lineages but were unable to associate these consistently with different landscapes, probably because population structure has been modified by human‐mediated translocations for recent commercial farming. We investigated the evolutionary history and relationships of allopatric Chinese giant salamander populations with Next‐Generation Sequencing methods, using historical museum specimens and late 20th‐century samples, and retrieved partial or near‐complete mitogenomes for 17 individuals. Samples from populations unlikely to have been affected by translocations form three clades from separate regions of China, spatially congruent with isolation by either major river drainages or mountain ranges. Pliocene–Pleistocene divergences for these clades are consistent with topographic modification of southern China associated with uplift of the Qinghai‐Tibet Plateau. General Mixed Yule Coalescent model analysis indicates that these clades represent separate species: Andrias davidianus (Blanchard, 1871) (northern Yangtze/Sichuan), Andrias sligoi (Boulenger, 1924) (Pearl/Nanling), and an undescribed species (Huangshan). Andrias sligoi is possibly the world's largest amphibian. Inclusion of additional reportedly wild samples from areas of known giant salamander exploitation and movement leads to increasing loss of biogeographic signal. Wild Chinese giant salamander populations are now critically depleted or extirpated, and conservation actions should be updated to recognize the existence of multiple species.  相似文献   

3.
Mexico has a megadiverse avifauna that includes many endemic elements, as well as rich sets of species ranging farther north or farther south in the Americas. This avifauna, nonetheless, has suffered considerable losses as a consequence of long‐term, intensive human activity across the landscape. We review what is known about the Mexican avifauna, specifically its diversity and endemism, and how that knowledge has and has not turned into effective conservation measures to assure the long‐term integrity of the avifauna.  相似文献   

4.
Extreme conditions in subsurface are suspected to be responsible for morphological convergences, and so to bias biodiversity assessment. Subterranean organisms are also considered as having poor dispersal abilities that in turn generate a large number of endemic species when habitat is fragmented. Here we test these general hypotheses using the subterranean amphipod Niphargus virei. All our phylogenetic analyses (Bayesian, maximum likelihood and distance), based on two independent genes (28S and COI), revealed the same tripartite structure. N. virei populations from Benelux, Jura region and the rest of France appeared as independent evolutionary units. Molecular rates estimated via global or Bayesian relaxed clock suggest that this split is at least 13 million years old and accredit the cryptic diversity hypothesis. Moreover, the geographical distribution of these lineages showed some evidence of recent dispersal through apparent vicariant barrier. In consequence, we argue that future analyses of evolution and biogeography in subsurface, or more generally in extreme environments, should consider dispersal ability as an evolving trait and morphology as a potentially biased marker.  相似文献   

5.
陕西省黄河中游湿地冬季鸭科鸟类群落结构   总被引:1,自引:0,他引:1  
2002~2007年冬季,对黄河中游湿地4种典型生境包括滩涂、人工渔塘、芦苇沼泽和莲池中的鸭科鸟类群落进行了调查.共记录到鸭科鸟类7属20种,采用频率指数法确定的优势种为斑嘴鸭、绿翅鸭、赤膀鸭、绿头鸭、普通秋沙鸭,其数量之和占总数量的65.6%.对4种不同生境的物种多样性、丰富度、均匀度、优势度进行分析,结果表明芦苇沼泽的多样性和丰富度指数最高,莲池的多样性和丰富度指数最低.人类活动引起的隐蔽场所和食物资源的变化是造成分布差异的主要原因.  相似文献   

6.
7.
DNA barcoding using a partial region (648 bp) of the cytochrome c oxidase I (COI) gene is a powerful tool for species identification and has revealed many cryptic species in various animal taxa. In birds, cryptic species are likely to occur in insular regions like the Japanese Archipelago due to the prevention of gene flow by sea barriers. Using COI sequences of 234 of the 251 Japanese‐breeding bird species, we established a DNA barcoding library for species identification and estimated the number of cryptic species candidates. A total of 226 species (96.6%) had unique COI sequences with large genetic divergence among the closest species based on neighbour‐joining clusters, genetic distance criterion and diagnostic substitutions. Eleven cryptic species candidates were detected, with distinct intraspecific deep genetic divergences, nine lineages of which were geographically separated by islands and straits within the Japanese Archipelago. To identify Japan‐specific cryptic species from trans‐Paleartic birds, we investigated the genetic structure of 142 shared species over an extended region covering Japan and Eurasia; 19 of these species formed two or more clades with high bootstrap values. Excluding six duplicated species from the total of 11 species within the Japanese Archipelago and 19 trans‐Paleartic species, we identified 24 species that were cryptic species candidates within and surrounding the Japanese Archipelago. Repeated sea level changes during the glacial and interglacial periods may be responsible for the deep genetic divergences of Japanese birds in this insular region, which has led to inconsistencies in traditional taxonomies based on morphology.  相似文献   

8.
Aim To evaluate the role of historical processes in the evolution of Sclerurus leaftossers by integrating phylogenetic and phylogeographical approaches. Location Humid forests of the Neotropical region. Methods We reconstructed the evolutionary history of Sclerurus based on DNA sequences representing all species and 20 of the 26 recognized subspecies using one autosomal nuclear locus and three protein‐coding mitochondrial gene sequences. Phylogenetic relationships were inferred using Bayesian and maximum‐likelihood methods. We used Bayesian coalescent‐based approaches to evaluate demographic changes through time, and to estimate the timing of diversification events. Based on these results, we examined the temporal accumulation of divergence events using lineage‐through‐time plots. Results The monophyly of all Sclerurus species was strongly supported except for Sclerurus mexicanus, which was paraphyletic in relation to Sclerurus rufigularis, and for the sister pair Sclerurus scansorSclerurus albigularis, which were not reciprocally monophyletic in the nuclear tree. We found remarkably deep phylogeographical structure within all Sclerurus species, and overall this structure was congruent with currently recognized subspecies and Neotropical areas of endemism. Diversification within Sclerurus has occurred at a relatively constant rate since the Middle Miocene. Main conclusions Our results strongly support the relevance of physiographical (e.g. Nicaragua Depression, Isthmus of Panama, Andean Cordillera, great rivers of Amazonia) and ecological barriers (open vegetation corridor) and ecological gradients (elevational zonation) to the diversification of Neotropical forest‐dwelling organisms. Despite the high congruence among the spatial patterns identified, the variance in divergence times suggests multiple speciation events occurring independently across the same barrier, and a role for dispersal. The phylogenetic patterns and cryptic diversity uncovered in this study demonstrate that the current taxonomy of Sclerurus underestimates the number of species.  相似文献   

9.
10.
Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow‐up study required to verify their geographic or evolutionary limits. Here, we follow‐up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species’ range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome‐wide divergence (F ST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species’ range. Within lineages, gene flow was high, with low differentiation (mean F ST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non‐contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.  相似文献   

11.
Microstomum lineare is a common species of fresh and brackish waters found worldwide. Three genes (18S, CO1 and ITS) were sequenced from specimens of M. lineare collected from four countries, and the levels of cryptic diversity and genetic structuring were assessed. Results showed M. lineare has very wide haplotype distributions suggesting higher than expected dispersal capabilities. In addition, three new species were described on the basis of molecular taxonomy: Microstomum artoisi sp. nov., Microstomum tchaikovskyi sp. nov. and Microstomum zicklerorum sp. nov.  相似文献   

12.
汉江中上游河道冬季水鸟共30种,隶属7目7科。其中,冬候鸟15种,留鸟8种,占73.3%,旅鸟7种。调查分析表明:独特的动物地理区系和优越的湿地环境使汉水中上游流域成为重要的鸟类越冬地及迁徙中转地,由此形成了该地特殊的冬季鸟类结构。  相似文献   

13.
There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar.  相似文献   

14.
Cryptic relatedness is a confounding factor in genetic diversity and genetic association studies. Development of strategies to reduce cryptic relatedness in a sample is a crucial step for downstream genetic analyses. This study uses a node selection algorithm, based on network degrees of centrality, to evaluate its applicability and impact on evaluation of genetic diversity and population stratification. 1,036 Guzerá (Bos indicus) females were genotyped using Illumina Bovine SNP50 v2 BeadChip. Four strategies were compared. The first and second strategies consist on a iterative exclusion of most related individuals based on PLINK kinship coefficient (φij) and VanRaden's φij, respectively. The third and fourth strategies were based on a node selection algorithm. The fourth strategy, Network G matrix, preserved the larger number of individuals with a better diversity and representation from the initial sample. Determining the most probable number of populations was directly affected by the kinship metric. Network G matrix was the better strategy for reducing relatedness due to producing a larger sample, with more distant individuals, a more similar distribution when compared with the full data set in the MDS plots and keeping a better representation of the population structure. Resampling strategies using VanRaden's φij as a relationship metric was better to infer the relationships among individuals. Moreover, the resampling strategies directly impact the genomic inflation values in genomewide association studies. The use of the node selection algorithm also implies better selection of the most central individuals to be removed, providing a more representative sample.  相似文献   

15.
A combination of traditional taxonomic procedures and molecular techniques has provided new insight into the problems of cryptic species and sexual and ontogenetic polymorphism in the Tanaidacea. Using polymerase chain reaction and DNA markers, three cryptic species of Paratanais were identified. PCR primers were used to amplify the divergent internal transcribed spacers (ITS) of these species. Restriction digestion of the amplified rDNA generated species specific DNA banding. Male and five female stages of Paratanais maleticus sp. nov. and two other new species, P. malign us and P. perturbatius , are described. Morphological variation, both sexual and ontogenetic, was found in several generic characters of Paratanais and required the diagnosis to be modified. The identification of three undescribed cryptic species from a single microhabitat in a well studied, shallow water and easily accessible locality, demonstrate that the biodiversity of tanaid crustacean is significantly underestimated.  相似文献   

16.
Diplostomoid metacercariae parasitize freshwater fishes worldwide and cannot be identified to species based on morphology. In this study, sequences of the barcode region of cytochrome c oxidase subunit 1 (CO1) were used to discriminate species in 1088 diplostomoids, most of which were metacercariae from fish collected in the St. Lawrence River, Canada. Forty‐seven diplostomoid species were detected, representing a large increase in known diversity. Most species suggested by CO1 sequences were supported by sequences of internal transcribed spacer (ITS) of rDNA and host and tissue specificity. Three lines of evidence indicate that physiological incompatibility between host and parasite is a more important determinant of host specificity than ecological separation of hosts and parasites in this important group of freshwater fish pathogens. First, nearly all diplostomoid species residing outside the lens of the eyes of fish are highly host specific, while all species that occur inside the lens are generalists. This can be plausibly explained by a physiological mechanism, namely the lack of an effective immune response in the lens. Second, the distribution of diplostomoid species among fish taxa reflected the phylogenetic relationships of host species rather than their ecological similarities. Third, the same patterns of host specificity were observed in separate, ecologically distinctive fish communities.  相似文献   

17.
  1. Recent advances in molecular methods foster the documentation of small spatial scale biological diversity over large geographical areas. These advances allow to correctly record α-diversity, but also enable biomonitoring that describes intraspecific molecular diversity, providing valuable insights into the contemporary history of species. Such information is essential for the accurate monitoring of freshwater communities and provides a promising tool to identify conservation priorities at various spatial scales.
  2. Here, we combined morphological species determinations with genetic characterisation via DNA barcoding and species distribution modelling. We aimed to investigate whether closely related amphipod species occupying overlapping ecological niches and occurring in partial sympatry, demonstrate similar spatial patterns of intraspecific genetic diversity and share comparable population histories. Therefore, we characterised the amphipod fauna within the Kinzig catchment (1,058 km2, Hesse, Central Germany) that is a tributary of the Main River and part of the long-term ecological research network using genetics.
  3. Our genetic analysis revealed two more taxonomic entities than previously known. The most common species was Gammarus fossarum clade 11 (or type B), followed by Gammarus roeselii clade C, Gammarus pulex clade D, G. pulex clade B and a very rare previously unknown lineage within the G. fossarum-species complex, which we refer to as G. fossarum clade RMO. These five taxa differed in their intraspecific genetic diversity, with G. fossarum clade 11 demonstrating the highest diversity and having a prominent small-scale pattern with endemic haplotypes in headwater regions. Distributions were predicted for the three most abundant molecularly identified species.
  4. The upstream reaches maintained high intraspecific α- and β-diversity, pointing towards a more complex population structure of G. fossarum clade 11. This highlights the importance of considering intraspecific diversity for the conservation of individual species. DNA-based species distribution models shed light on species-specific habitat preferences, and showed spatial distribution patterns that supported ecological inference and conservation management. Barcoding specimens prior to modelling can increase robustness and performance of distribution models as juveniles can be incorporated, and cryptic species complexes disentangled.
  5. Our integrative study contributes to the further development of science-informed and holistically considered effective conservation measures. Some poorly dispersing hololimnic species may serve as representatives for our understanding of the natural history of the local communities in headwater regions—and their protection. Intraspecific genetic diversity should be considered in conservation management decisions as it can provide valuable information on past and present population demography, connectivity, and recovery processes of species—information that rarely can be achieved by traditional monitoring approaches.
  相似文献   

18.
东苕溪中下游河岸类型对鱼类多样性的影响   总被引:2,自引:0,他引:2  
河流修复工程被美国《科学》杂志列入2000年最具发展潜力的六大领域之一,河流修复工程对水生生态系统的影响也成为各国科学家的研究热点。本文以东苕溪中下游河段为对象,研究4种不同河岸类型(自然河岸 水生植物(A)、自然河岸 无水生植物(B)、人工河岸 水生植物(C)、人工河岸 无水生植物(D))对鱼类生物多样性的影响。本次调查共采集鱼类标本499尾,经鉴定为32种,隶属于7目10科24属。鱼类生物多样性结果显示A、B的物种丰度和Shannon-Wiener指数与D存在显著差异(P<0.05); A的优势度指数与D存在显著性差异(P<0.05); A、C的均匀度与D存在显著性差异。鱼类群落NMDS排序与相似性分析(ANOSIM)显示D与A、B、C能完全分开,且D与A、C存在显著性差异(P<0.05),其中A与C存在显著性差异。因此,河流修复工程中水生植被的恢复对于水生生物多样性的维持至关重要,且恢复水生植被的河流修复工程会减少该工程对鱼类群落结构和生物多样的负面影响。  相似文献   

19.
Pseudo-nitzschia is a marine cosmopolitan genus of chain-forming planktonic diatoms. As for the vast majority of phytoplankton organisms, species identification within this genus mostly relies upon morphological features. Taxa were initially identified based on cell shape and gross morphology of their composite silica cell wall, called the frustule. Yet, observations of the frustule in electron microscopy showed many additional characters for species identification and results of molecular studies have demonstrated that genetically distinct groups might exist within morpho-species. However, these studies have not addressed the biological meaning of these genetic differences. Here, we bridge that gap by comparing ultrastructural features and sequence data (three ribosomal and one plastid marker) of 95 strains with results of mating experiments among these strains. Experiments were performed on two morphologically distinct entities: P. delicatissima and P. pseudodelicatissima. Each of the two entities consisted of multiple genetically distinct and reproductively isolated taxa, all occurring in sympatry: P. delicatissima was composed of three phylogenetic and reproductively distinct groups, whereas P. pseudodelicatissima consisted of up to five. Once these taxa had been defined both genetically and biologically, subtle ultrastructural differences could be detected as well. Our findings not only show that cryptic genetic variants abound in sympatry, but also that they are reproductively isolated and, therefore, biologically distinct units.  相似文献   

20.
We present SSU rDNA data resolving the seasonal and geographical distribution of 'cryptic' genetic types of the planktonic foraminifer morphospecies Globigerinoides ruber in the eastern Atlantic Ocean and the Mediterranean Sea. Analysis of 262 sequences revealed the presence of five genetic types belonging to two distinct lineages. Although the morphospecies G. ruber occurs throughout the investigated region, its constituent 'cryptic' genetic types show a pattern of widespread exclusion, which is difficult to reconcile with the concept of ubiquitous dispersal. One of the newly discovered genetic types was exclusively found at stations in the Mediterranean Sea, possibly representing the smallest-scale example of endemism known in planktonic foraminifera. In general, our results suggest that the geographical scale of mutual exclusion between the genotypes is negatively correlated with their phylogenetic relatedness: the most similar and most recently diverged pair of siblings showed the strongest evidence for small-scale competitive exclusion. This pattern is consistent with the concept of niche partitioning, implying decreasing level of competition between genetic types with increasing degree of genetic divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号