首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme immobilization: an update   总被引:1,自引:0,他引:1  
Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need for immobilization and different applications in industry, covering the last two decades. The most recent papers, patents, and reviews on immobilization strategies and application are reviewed.  相似文献   

2.
Many different micro and nano sized materials have been used for enzymes immobilization in order to increase their catalytic activity and stability. Generally, immobilized enzymes with conventional immobilization techniques exhibit improved stability while their activity is lowered compared to free enzymes. Recently, an elegant immobilization approach was discovered in synthesis of flower-like organic-inorganic hybrid nanostructures with extraordinary catalytic activity and stability. In this novel immobilization strategy, proteins (enzymes) and metal ions acted as organic and inorganic components, respectively to form hybrid nanoflowers (hNFs). It is demonstrated that the hNFs highly enhanced catalytic activities and stability in a wide range of experimental conditions (pHs, temperatures and salt concentration, etc.) compared to free and conventionally immobilized enzymes. This review mainly discussed the synthesis, characterization, development and applications of organic-inorganic hybrid nanoflowers formed of various enzymes and metal ions and explained potential mechanism underlying enhanced catalytic activity and stability.  相似文献   

3.
In this work, cephalosporin C acylase (CA), a heterodimeric enzyme of industrial potential in direct hydrolysis of cephalosporin C (CPC) to 7‐aminocephalosporanic acid (7‐ACA), was covalently immobilized on the aminated support LX1000‐HA (HA) with two different protocols. The stability of CA adsorbed onto the HA support followed by crosslinking with glutaraldehyde (HA–CA–glut) was better than that of the CA covalently immobilized on the glutaraldehyde preactivated HA support (HA–glut–CA). The thermostabilization factors (compared with the free enzyme) of these two immobilized enzymes were 11.2‐fold and 2.2‐fold, respectively. In order to improve the stability of HA–CA–glut, a novel strategy based on postimmobilization modifying with aminated molecules was developed to take advantage of the glutaraldehyde moieties left on the enzyme and support. The macromolecules, such as polyethyleneimine (PEI) and chitosan, had larger effects than small molecules on the thermal stability of the immobilized enzyme perhaps due to crosslinking of the enzymes and support with each other. The quaternary structure of the CA could be much stabilized by this novel approach including physical adsorption on aminated support, glutaraldehyde treatment, and macromolecule modification. The HA–CA–glut–PEI20000 (the HA–CA–glut postmodified with PEI Mw = 20,000) had a thermostabilization factor of 20‐fold, and its substrate affinity (Km = 14.3 mM) was better than that of HA–CA–glut (Km = 33.4 mM). The half‐life of the immobilized enzymes HA–CA–glut–PEI20000 under the CPC‐catalyzing conditions could reach 28 cycles, a higher value than that of HA–CA–glut (21 cycles). © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:387–395, 2015  相似文献   

4.
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.  相似文献   

5.
In the modern era, the use of sustainable, environmentally friendly alternatives for removal of recalcitrant pollutants in streams resulting from industrial processes is of key importance. In this context, biodegradation of phenolic compounds, pharmaceuticals and dyes in wastewater by using oxidoreductases offers numerous benefits. Tremendous research efforts have been made to develop novel, hybrid strategies for simultaneous immobilization of oxidoreductase and removal of toxic compounds. The use of support materials with the options for combining enzyme immobilization with adsorption technology focused on phenolic pollutants and products of biocatalytic conversion seems to be of particular interest. Application of enzymatic reactors based on immobilized oxidoreductases for coupling enzyme-aided degradation and membrane separation also attract still growing attention. However, prior selection of the most suitable support/sorbent material and/or membrane as well as operational mode and immobilization technique is required in order to achieve high removal efficiency. Thus, in the framework of this review, we present an overview of the impact of support/sorbent material on the catalytic properties of immobilized enzymes and sorption of pollutants as well as parameters of membranes for effective bioconversion and separation. Finally, future perspectives of the use of processes combining enzyme immobilization and sorption technology as well as application of enzymatic reactors for removal of environmental pollutants are discussed.  相似文献   

6.
《Process Biochemistry》2014,49(4):604-616
Lecitase Ultra (a quimeric fosfolipase commercialized by Novozymes) has been immobilized via two different strategies: mild covalent attachment on cyanogen bromide agarose beads and interfacial activation on octyl-agarose beads. Both immobilized preparations have been submitted to different individual or cascade chemical modifications (amination, glutaraldehyde or 2,4,6-trinitrobenzensulfonic acid (TNBS) modification) in order to check the effect of these modifications on the catalytic features of the immobilized enzymes (including stability and substrate specificity under different conditions). The first point to be remarked is that the immobilization strongly affects the enzyme catalytic features: octyl-Lecitase was more active versus p-nitrophenylbutyrate but less active versus methyl phenylacetate than the covalent preparations. Moreover, the effects of the chemical modifications strongly depend on the immobilization strategy used. For example, using one immobilization protocol a modification improves activity, while for the other immobiled enzyme is even negative. Most of the modifications presented a positive effect on some enzyme properties under certain conditions, although in certain cases that modification presented a negative effect under other conditions. For example, glutaraldehyde modification of immobilized or modified and aminated enzyme permitted to improve enzyme stability of both immobilized enzymes at pH 7 and 9 (around a 10-fold), but only the aminated enzyme improved the enzyme stability at pH 5 by glutaraldehyde treatment. This occurred even though some intermolecular crosslinking could be detected via SDS-PAGE. Amination improved the stability of octyl-Lecitase, while it reduced the stability of the covalent preparation. Modification with TNBS only improved enzyme stability of the covalent preparation at pH 9 (by a 10-fold factor).  相似文献   

7.
The immobilization of a glutamate dehydrogenase from Thermus thermophilus (GDH) on glyoxyl agarose beads at pH 7 has permitted to perform the immobilization, purification and stabilization of this interesting enzyme. It was cloned in Escherichia coli and a first thermal shock of the crude preparation destroyed most mesophilic multimeric proteins. Glyoxyl agarose can only immobilize enzymes via a multipoint and simultaneous attachment. Therefore, only proteins having several terminal amino groups in a position that permits their interaction with a flat surface can be immobilized. GDH became rapidly immobilized at pH 7 and its multimeric structure became stabilized as evidenced by SDS-PAGE. This derivative was stable at acidic pH value while the non-stabilized enzyme was very unstable under these conditions due to subunit dissociation. After immobilization, a further incubation at pH 10 improved enzyme stability under any inactivating conditions by increasing the enzyme–support bonds. In fact, GDH immobilized at pH 7 and incubated at pH 10 preserved more activity than GDH directly immobilized at pH 10 (50% versus 15% after 24 h of incubation) and was also more stable (1.5- to 3-fold, depending on the conditions).This method could be extended to any other multimeric enzyme expressed in mesophilic hosts.  相似文献   

8.
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process.Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.  相似文献   

9.
Highly activated glyoxyl-supports rapidly immobilize proteins at pH 10 (where the -amino groups of the Lys groups of the protein surface are very reactive), and stabilize them by multipoint covalent attachment. However, they do not immobilize proteins at pH 8. This paper shows that the enzyme immobilization at this mild pH value is possible by incubation of the enzymes in the presence of different thiolated compounds (dithiothreitol, DTT; was selected as optimal reagent). The thiolated compounds (even the not reducing ones) stabilized the imino bonds formed at pH 8 between the aldehydes in the support and the amino groups of the protein. However, thiolated compounds are unable to reduce the imino bonds or the aldehyde groups and a final reduction step (e.g., using sodium borohydride) was always necessary. After enzyme immobilization through the most reactive amino group of the protein, the further incubation of this immobilized enzyme at pH 10 would improve the reactivity of the -amino groups of the Lys residues of the protein surface. Then, an intense multipoint covalent reaction of the enzyme with the dense layer of glyoxyl groups in the support could be obtained, increasing the stability of the immobilized enzyme. Using three different industrially relevant enzymes (penicillin G acylase from Escherichia coli (PGA), lipase from Bacillus thermocatenulatus (BTL2) and glutaryl acylase from Pseudomonas sp. (GA)), new immobilized-stabilized biocatalysts of the enzymes were produced. After reduction, the preparations incubated at pH 10 were more stable than those that were only immobilized and reduced at pH 8. In the case of the PGA, this preparation was even 4–5-fold more stable than those obtained by direct immobilization at pH 10 (around 40,000–50,000-fold more stable than the soluble enzyme).  相似文献   

10.
Multiple enzyme mixtures are attractive for the production of many compounds at an industrial level. We report a practical and novel approach for coimmobilization of two enzymes. The system consists of a silica microsphere core coated with two layers of individually immobilized enzymes. The model enzymes α‐amylase (AA) and glucoamylase (GluA) were individually immobilized on carbon nanotubes (CNTs). A CNT‐GluA layer was formed by adsorbing CNT‐GluA onto silica microsphere. A sol‐gel layer with entrapped CNT‐AA was then formed outside the CNT‐GluA/silica microsphere conjugate. The coimmobilized α‐amylase and glucoamylase exhibited 95.1% of the activity of the mixture of free α‐amylase and glucoamylase. The consecutive use exhibited a good stability of the coimmobilized enzymes. The developed approach demonstrates advantages, including controlling the ratio of coimmobilized enzymes in an easy way, facilitating diffusion of small molecules in and out of the matrix, and preventing the leaching of enzymes. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:42–47, 2015  相似文献   

11.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

12.
Enzymes have been widely used because of their catalytic properties, and immobilization is a promising technique to improve their catalytic activity and stability. Due to their large specific surface areas, exceptional chemical, mechanical, thermal and cost effective characteristics, nanomaterials should be ideal carriers for the immobilization of enzymes. Enzymes immobilized on nano-carriers are more robust and stable, and can be recycled and reused. This review focuses on the nanomaterial immobilized enzymes and their applications. The introduction addresses the advantages of immobilized enzymes and the features of enzyme immobilization nanocarriers. The next section covers carbonaceous nanomaterials used in enzymes immobilization, with subsections on carbon nanotube, graphene, graphene oxide and reduced graphene oxide. The third section treats metallic nanomaterials for enzymes immobilization, with subsections on metal (gold), metal oxide (titanium dioxide, zinc oxide) and metal hydroxide (layered double hydroxide) nanomaterials. Then, the next section summarizes the applications of nanomaterial immobilized enzymes. A concluding section discusses the challenges and prospects of nanomaterial immobilized enzymes.  相似文献   

13.
The use of heterogeneous biocatalysis in industrial applications is advantageous and the enzyme stability improvement is a continuous challenge. Therefore, we designed β‐galactosidase heterogeneous biocatalysts by immobilization, involving the support synthesis and enzyme selection (from Bacillus circulans, Kluyveromyces lactis, and Aspergillus oryzae). The underivatized, tailored, macro‐mesoporous silica exhibited high surface area, offered high enzyme immobilization yields and activity. Its chemical activation with glyoxyl groups bound the enzyme covalently, which suppressed lixiviation and conferred higher pH and thermal stability (120‐fold than for the soluble enzyme), without observable reduction of activity/stability due to the presence of silica. The best balance between the immobilization yield (68%), activity (48%), and stability was achieved for Bacillus circulans β‐galactosidase immobilized on glyoxyl‐activated silica, without using stabilizing agents or modifying the enzyme. The enzyme stabilization after immobilization in glyoxyl‐activated silica was similar to that observed in macroporous agarose‐glyoxyl support, with the reported microbiological and mechanical advantages of inorganic supports. The whey lactolysis at pH 6.0 and 25°C by using this catalyst (1 mg ml?1, 290 UI g?1) was still 90%, even after 10 cycles of 10 min, in batch process but it could be also implemented on continuous processes at industrial level with similar results.  相似文献   

14.
α-Galactosidase from tomato has been immobilized on Sepabead EC-EA and Sepabead EC-HA, which were activated with ethylendiamino and hexamethylenediamino groups, respectively. Two strategy was used for the covalent immobilization of α-galactosidase on the aminated Sepabeads: covalent immobilization of enzyme on glutaraldehyde activated support and cross-linking of the adsorbed enzymes on to the support with glutaraldehyde. By using these two methods, all the immobilized enzymes retained very high activity and the stability of the enzyme was also improved. The obtained results showed that, the most stable immobilized α-galactosidase was obtained with the second strategy. The immobilized enzymes were characterized with respect to free counterpart. Some parameters effecting to the enzyme activity and stability were also analyzed. The optimum temperature and pH were found as 60 °C and pH 5.5 for all immobilized enzymes, respectively. All the immobilized α-galactosidases were more thermostable than the free enzyme at 50 °C. The stabilities of the Sepabead EC-EA and EC-HA adsorbed enzymes treated with glutaraldehyde compared to the stability of the free enzyme were a factor of 6 for Sepabead EC-EA and 5.3 for Sepabead EC-HA. Both the free and immobilized enzymes were very stable between pH 3.0 and 6.0 and more than 85% of the initial activities were recovered. Under the identical storage conditions the free enzyme lost its initial activity more quickly than the immobilized enzymes at the same period of time. The immobilized α-galactosidase seems to fulfill the requirements for different industrial applications.  相似文献   

15.
Alcalase was scarcely immobilized on monoaminoethyl-N-aminoethyl (MANAE)-agarose beads at different pH values (<20% at pH 7). The enzyme did not immobilize on MANAE-agarose activated with glutaraldehyde at high ionic strength, suggesting a low reactivity of the enzyme with the support functionalized in this manner. However, the immobilization is relatively rapid when using low ionic strength and glutaraldehyde activated support. Using these conditions, the enzyme was immobilized at pH 5, 7, and 9, and in all cases, the activity vs. Boc-Ala-ONp decreased to around 50%. However, the activity vs. casein greatly depends on the immobilization pH, while at pH 5 it is also 50%, at pH 7 it is around 200%, and at pH 9 it is around 140%. All immobilized enzymes were significantly stabilized compared to the free enzyme when inactivated at pH 5, 7, or 9. The highest stability was always observed when the enzyme was immobilized at pH 9, and the worst stability occurred when the enzyme was immobilized at pH 5, in agreement with the reactivity of the amino groups of the enzyme. Stabilization was lower for the three preparations when the inactivation was performed at pH 5. Thus, this is a practical example on how the cooperative effect of ion exchange and covalent immobilization may be used to immobilize an enzyme when only one independent cause of immobilization is unable to immobilize the enzyme, while adjusting the immobilization pH leads to very different properties of the final immobilized enzyme preparation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2768, 2019.  相似文献   

16.
Bacterial cellulose (BC) has attracted attention as a new functional material due to its excellent mechanical strength, tridimensional nanostructure, high purity, and increased water absorption, compared to plant cellulose. In this work, commercial laccase was immobilized on BC and the influence of enzyme concentration, contact time, and pH was optimized toward the recovery activity of immobilized laccase. This optimization was carried out using a 33 experimental design and response surface methodology. Enzyme concentration played a critical role in laccase immobilization. Under optimized conditions (0.15 μL L?1 of enzyme concentration, 4.8 h of contact time, pH 5.4), the predicted and experimental response were equal to 47.88 and 49.30%, respectively. The thermal stability of the immobilized laccase was found to increase notably at 60 and 70°C presenting stabilization factor equal to 1.79 and 2.11, respectively. The immobilized laccase showed high operational stability, since it retained 86% of its initial activity after seven consecutive biocatalytic cycles of reaction with 2,2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulfonic acid). Kinetic studies showed that the values of Michaelis–Menten constant and maximum reaction rate decreased upon immobilization (9.9‐ and 1.6‐fold, respectively). Globally, the use of immobilized laccase on BC offers an interesting tool for industrial biocatalytic applications.  相似文献   

17.
酶催化CO2还原制备高值化学品对缓解全球环境和能源危机具有重要意义,利用甲酸脱氢酶(formate dehydrogenase,FDH)或多酶级联还原CO2制备甲酸/甲醇具有选择性高、条件温和的优势,但关键酶活性低、稳定性差和重复利用率低的问题限制了其规模化应用,酶的固定化为这些问题提供了有效解决方案。本文总结了近年来利用膜、无机材料、金属有机框架和共价有机框架等载体对酶进行固定化的研究进展,阐释了不同固定材料和固定方式的特点和优势;进一步总结了固定化酶与电催化或光催化耦联反应体系对CO2还原的协同效果及应用,同时指出酶固定化技术和耦联反应体系目前存在的问题并对其发展前景进行了展望。  相似文献   

18.
Biocatalytic transformations that employ immobilized enzymes become increasingly important for industrial applications. Synthetic or natural textile fiber materials such as polyester, polyamide or viscose are support materials that are comparatively inexpensive. Contrary to traditional support materials, their flexibility enables their use in reactors of any geometry and a fast and residue‐free removal from batch reactors. In this study a permanently immobilized peroxidase (Baylase®) has been investigated on polyester felt as a solid support as a new heterogeneous catalyst system. The polyester felt was functionalized by coating with polyvinylamine and subsequent activation with glutaraldehyde as a crosslinking agent. The enzyme load on the textile surface, the activity of the immobilized protein after repeated use as well as the storage stability was evaluated. Scanning electron micrographs and UV Vis spectroscopy made it possible to verify the enzyme immobilization on the textile surface. Furthermore, the load of immobilized peroxidase was determined by ICP OE spectrometry to be 9–12 mg per gram of textile. The activity of immobilized Baylase® remained high over 35 reaction cycles and a storage period of 8 weeks.  相似文献   

19.
Chiral alcohols are important building blocks for specialty chemicals and pharmaceuticals. The production of chiral alcohols from ketones can be carried out stereo selectively with alcohol dehydrogenases (ADHs). To establish a process for cost‐effective enzyme immobilization on solid phase for application in ketone reduction, we used an established enzyme pair consisting of ADH from Rhodococcus erythropolis and formate dehydrogenase (FDH) from Candida boidinii for NADH cofactor regeneration and co‐immobilized them on modified poly‐p‐hydroxybutyrate synthase (PhaC)‐inclusion bodies that were recombinantly produced in Escherichia coli cells. After separate production of genetically engineered and recombinantly produced enzymes and particles, cell lysates were combined and enzymes endowed with a Kcoil were captured on the surface of the Ecoil presenting particles due to coiled‐coil interaction. Enzyme‐loaded particles could be easily purified by centrifugation. Total conversion of 4'‐chloroacetophenone to (S)‐4‐chloro‐α‐methylbenzyl alcohol could be accomplished using enzyme‐loaded particles, catalytic amounts of NAD+ and formate as substrates for FDH. Chiral GC‐MS analysis revealed that immobilized ADH retained enantioselectivity with 99 % enantiomeric excess. In conclusion, this strategy may become a cost‐effective alternative to coupled reactions using purified enzymes.  相似文献   

20.
Dextranase (1,6-α-d-glucan 6-glucanohydrolase, EC 3.2.1.11) from Penicillium aculeatum culture has been immobilized on a bentonite support. The matrix-bound enzyme could be stored as acetone-dried powder or as a suspension in acetate buffer, pH 5.6, for about three weeks at 4°C without any loss of activity. There was no change in the specific activity of the enzyme on immobilization and the enzyme yield was 0.1–0.6 mg/g bentonite matrix. In the presence of sucrose, thermal stability of the immobilized enzyme was high and the bound enzyme could be used for about six cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号