首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Characterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white‐nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292‐bp region of the mitochondrial genome. Analyses of FST, ΦST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global FST = 0.001, < 0.05, Global ΦST = 0.045, < 0.01, STRUCTURE = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male‐biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation.  相似文献   

2.
Here, we explore the historical and contemporaneous patterns of connectivity among Encholirium horridum populations located on granitic inselbergs in an Ocbil landscape within the Brazilian Atlantic Forest, using both nuclear and chloroplast microsatellite markers. Beyond to assess the E. horridum population genetic structure, we built species distribution models across four periods (current conditions, mid‐Holocene, Last Glacial Maximum [LGM], and Last Interglacial) and inferred putative dispersal corridors using a least‐cost path analysis to elucidate biogeographic patterns. Overall, high and significant genetic divergence was estimated among populations for both nuclear and plastid DNA (ΦST(n) = 0.463 and ΦST(plastid) = 0.961, respectively, < .001). For nuclear genome, almost total absence of genetic admixture among populations and very low migration rates were evident, corroborating with the very low estimates of immigration and emigration rates observed among E. horridum populations. Based on the cpDNA results, putative dispersal routes in Sugar Loaf Land across cycles of climatic fluctuations in the Quaternary period revealed that the populations’ connectivity changed little during those events. Genetic analyses highlighted the low genetic connectivity and long‐term persistence of populations, and the founder effect and genetic drift seemed to have been very important processes that shaped the current diversity and genetic structure observed in both genomes. The genetic singularity of each population clearly shows the need for in situ conservation of all of them.  相似文献   

3.
Social structure can have a significant impact on divergence and evolution within species, especially in the marine environment, which has few environmental boundaries to dispersal. On the other hand, genetic structure can affect social structure in many species, through an individual preference towards associating with relatives. One social species, the short‐finned pilot whale (Globicephala macrorhynchus), has been shown to live in stable social groups for periods of at least a decade. Using mitochondrial control sequences from 242 individuals and single nucleotide polymorphisms from 106 individuals, we examine population structure among geographic and social groups of short‐finned pilot whales in the Hawaiian Islands, and test for links between social and genetic structure. Our results show that there are at least two geographic populations in the Hawaiian Islands: a Main Hawaiian Islands (MHI) population and a Northwestern Hawaiian Islands/Pelagic population (FST and ΦST < .001), as well as an eastern MHI community and a western MHI community (FST = .009). We find genetically driven social structure, or high relatedness among social units and clusters (< .001), and a positive relationship between relatedness and association between individuals (< .0001). Further, socially organized clusters are genetically distinct, indicating that social structure drives genetic divergence within the population, likely through restricted mate selection (FST = .05). This genetic divergence among social groups can make the species less resilient to anthropogenic or ecological disturbance. Conservation of this species therefore depends on understanding links among social structure, genetic structure and ecological variability within the species.  相似文献   

4.
Diplodia seriata, Phaeomoniella chlamydospora and Phaeoacremonium aleophilum are the three main species associated with grapevine decline in Spain. AFLP markers were developed to discriminate Spanish populations of these species. The markers were used to genotype isolates of D. seriata, P. chlamydospora and P. aleophilum. AFLP markers were valuable in performing population genetic studies as genetic variability (Kx) ranged from 0.07 in the P. chlamydospora population to 0.28 in the D. seriata population. Species‐specific markers obtained using only two AFLP combinations clearly discriminate D. seriata, P. chlamydospora and P. aleophilum and are a useful tool in simultaneous identification tests.  相似文献   

5.
Analytical methods that apply coalescent theory to multilocus data have improved inferences of demographic parameters that are critical to understanding population divergence and speciation. In particular, at the early stages of speciation, it is important to implement models that accommodate conflicting gene trees, and benefit from the presence of shared polymorphisms. Here, we employ eleven nuclear loci and the mitochondrial control region to investigate the phylogeography and historical demography of the pelagic seabird White‐faced Storm‐petrel (Pelagodroma marina) by sampling subspecies across its antitropical distribution. Groups are all highly differentiated: global mitochondrial ΦST = 0.89 (< 0.01) and global nuclear ΦST varies between 0.22 and 0.83 (all < 0.01). The complete lineage sorting of the mitochondrial locus between hemispheres is corroborated by approximately half of the nuclear genealogies, suggesting a long‐term antitropical divergence in isolation. Coalescent‐based estimates of demographic parameters suggest that hemispheric divergence of P. marina occurred approximately 840 000 ya (95% HPD 582 000–1 170 000), in the absence of gene flow, and divergence within the Southern Hemisphere occurred 190 000 ya (95% HPD 96 000–600 000), both probably associated with the profound palaeo‐oceanographic changes of the Pleistocene. A fledgling sampled in St Helena (tropical South Atlantic) suggests recent colonization from the Northern Hemisphere. Despite the great potential for long‐distance dispersal, P. marina antitropical groups have been evolving as independent, allopatric lineages, and divergence is probably maintained by philopatry coupled with asynchronous reproductive phenology and local adaptation.  相似文献   

6.
This study investigated the effects of climate oscillations on the evolution of two closely related Allium species, A. neriniflorum and A. tubiflorum. We sequenced three cp DNA (cpDNA) fragments (rps16, rpl32‐trnL, and trnD‐trnT, together approximately 2,500 bp in length) of two closely related Allium species, with samples from 367 individuals in 47 populations distributed across the total range of these species. The interspecific and intraspecific divergence times of the two species were in the Quaternary glaciation. The population divergence was high for the cpDNA variation, suggesting a significant phylogeographic structure (NST = 0.844, GST = 0.798, p < 0.05). Remarkable ecological differentiation was also revealed by Niche models and statistical analyses. Our results suggest the speciation event of the two species was triggered by violent climatic changes during the Quaternary glaciation.  相似文献   

7.
A growing number of studies have been investigating the influence of contemporary environmental factors on population genetic structure, but few have addressed the issue of spatial patterns in the variable intensity of factors influencing the extent of population structure, and particularly so in aquatic ecosystems. In this study, we document the landscape genetics of northern pike (Esox lucius), based on the analysis of nearly 3000 individuals from 40 sampling sites using 22 microsatellites along the Lake Ontario – St. Lawrence River system (750 km) that locally presents diverse degrees of interannual water level variation. Genetic structure was globally very weak (FST = 0.0208) but spatially variable with mean level of differentiation in the upstream section of the studied area being threefold higher (FST = 0.0297) than observed in the downstream sector (FST = 0.0100). Beside interannual water level fluctuation, 19 additional variables were considered and a multiple regression on distance matrices model (R2 = 0.6397, < 0.001) revealed that water masses (= 0.3617, < 0.001) and man‐made dams (= 0.4852, < 0.005) reduced genetic connectivity. Local level of interannual water level stability was positively associated to the extent of genetic differentiation (= 0.3499, < 0.05). As water level variation impacts on yearly quality and localization of spawning habitats, our study illustrates how temporal variation in local habitat availability, caused by interannual water level fluctuations, may locally decrease population genetic structure by forcing fish to move over longer distances to find suitable habitat. This study thus represents one of the rare examples of how environmental fluctuations may influence spatial variation in the extent of population genetic structure within a given species.  相似文献   

8.
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

9.
High‐throughput sequencing is revealing that most macro‐organisms house diverse microbial communities. Of particular interest are disease vectors whose microbiome could potentially affect pathogen transmission and vector competence. We investigated bacterial community composition and diversity of the ticks Dermacentor variabilis (n = 68) and Ixodes scapularis (n = 15) and blood of their shared rodent host, Peromyscus leucopus (n = 45) to quantify bacterial diversity and concordance. The 16S rRNA gene was amplified from genomic DNA from field‐collected tick and rodent blood samples, and 454 pyrosequencing was used to elucidate their bacterial communities. After quality control, over 300 000 sequences were obtained and classified into 118 operational taxonomic units (OTUs, clustered at 97% similarity). Analysis of rarefied communities revealed that the most abundant OTUs were tick species‐specific endosymbionts, Francisella and Rickettsia, and the commonly flea‐associated bacterium Bartonella in rodent blood. An Arsenophonus and additional Francisella endosymbiont were also present in D. variabilis samples. Rickettsia was found in both tick species but not in rodent blood, suggesting that it is not transmitted during feeding. Bartonella was present in larvae and nymphs of both tick species, even those scored as unengorged. Relatively, few OTUs (e.g. Bartonella, Lactobacillus) were found in all sample types. Overall, bacterial communities from each sample type were significantly different and highly structured, independent of their dominant OTUs. Our results point to complex microbial assemblages inhabiting ticks and host blood including infectious agents, tick‐specific endosymbionts and environmental bacteria that could potentially affect arthropod‐vectored disease dynamics.  相似文献   

10.
11.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

12.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

13.
Birches (Betula spp.) hybridize readily, confounding genetic signatures of refugial isolation and postglacial migration. We aimed to distinguish hybridization from range‐shift processes in the two widespread and cold‐adapted species B. nana and B. pubescens, previously shown to share a similarly east–west‐structured variation in plastid DNA (pDNA). We sampled the two species throughout their ranges and included reference samples of five other Betula species and putative hybrids. We analysed 901 individual plants using mainly nuclear high‐resolution markers (amplified fragment length polymorphisms; AFLPs); a subset of 64 plants was also sequenced for two pDNA regions. Whereas the pDNA variation as expected was largely shared between B. nana and B. pubescens, the two species were distinctly differentiated at AFLP loci. In B. nana, both the AFLP and pDNA results corroborated the former pDNA‐based hypothesis that it expanded from at least two major refugia in Eurasia, one south of and one east of the North European ice sheets. In contrast, B. pubescens showed a striking lack of geographic structuring of its AFLP variation. We identified a weak but significant increase in nuclear (AFLP) gene flow from B. nana into B. pubescens with increasing latitude, suggesting hybridization has been most frequent at the postglacial expansion front of B. pubescens and that hybrids mainly backcrossed to B. pubescens. Incongruence between pDNA and AFLP variation in B. pubescens can be explained by efficient expansion from a single large refugium combined with leading‐edge hybridization and plastid capture from B. nana during colonization of new territory already occupied by this more cold‐tolerant species.  相似文献   

14.
Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long‐term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.  相似文献   

15.
Miscanthus lutarioriparius is an endemic species that grows along the middle and lower reaches of the Yangtze River and is a valuable source of germplasm for the development of second‐generation energy crops. The plant that propagates via seeds, stem nodes, and rhizomes shows high phenotypic variation and strong local adaptation. Here, we examined the magnitude and spatial distribution of genetic variation in M. lutarioriparius across its entire distributional range and tested underlying factors that shaped its genetic variation. Population genetic analyses were conducted on 644 individuals from 25 populations using 16 microsatellite markers. M. lutarioriparius exhibited a high level of genetic variation (HE = 0.682–0.786; A= 4.74–8.06) and a low differentiation (FST = 0.063; Dest = 0.153). Of the total genetic variation, 10% was attributed to the differences among populations (df = 24, < 0.0001), whereas 90% was attributed to the differences among individuals (df = 619, ≤ 0.0001). Genetic diversity did not differ significantly across longitudes and did not increase in the populations growing downstream of the Yangtze River. However, significant associations were found between genetic differentiation and spatial distance. Six genetic discontinuities were identified, which mostly distributed among downstream populations. We conclude that anthropogenic factors and landscape features both contributed to shaping the pattern of gene flow in M. lutarioriparius, including long‐distance bidirectional dispersal. Our results explain the genetic basis of the high degree of adaptability in M. lutarioriparius and identify potential sources of new germplasm for the domestication of this potential second‐generation energy crop.  相似文献   

16.
Leptosphaeria maculans is the most important fungal pathogen of canola (Brassica napus, oilseed rape) that causes the devastating stem canker in canola fields of western Canada. The population genetic structure of L. maculans, represented by nine subpopulations from a 6‐year period and three different provinces in western Canada, was determined using ten minisatellite markers. Isolates collected at different locations in six consecutive years had an even distribution of MAT1‐1 and MAT1‐2 across the nine subpopulations. All subpopulations of L. maculans exhibited a moderate gene diversity (= 0.356–0.585). The majority of the genetic variation occurred within subpopulations. Approximately 8% and 4% of the variations were distributed between sampling year and location, respectively. Genetic distance (FST) results, using analysis of molecular variation (AMOVA), indicated that subpopulation pairing within isolates by year ranged from FST = 0.010 to 0.109, and the location subpopulation ranged from FST = 0.038 to 0.085. Bayesian clustering analyses of multiloci inferred two distinct clusters in all the subpopulations examined. This study indicates a relatively high degree of gene exchange between the different L. maculans isolates. Our results suggest that this can occur in the wide growing areas of canola fields in western Canada. This gene exchange produced different gene allele frequencies and divergence between populations.  相似文献   

17.
Anopheles fluviatilis, a major vector of malaria in India has been described as a complex of three sibling species members, named as S, T and U, based on variations in chromosomal inversions. Also, ribosomal DNA markers (repetitive Internal Transcribed Spacer 2 (ITS2) and 28S D3 region) were described to differentiate these three sibling species members. However, controversies prevail on the genetic isolation status of these cryptic species. Hence, we evaluated this taxonomic incongruence employing DNA barcoding, the well established methodology for species identification, using 60 An. fluviatilis sensu lato specimens, collected from two malaria endemic eastern states of India. These specimens were also subjected to sibling species characterization by ITS2 and D3 DNA markers. The former marker identified 31 specimens among these as An. fluviatilis S and 21 as An. fluviatilis T. Eight specimens amplified DNA fragments specific for both S and T. The D3 marker characterized 39 specimens belonging to species S and 21 to species T. Neither marker identified species U. Neighbor Joining analysis of mitochondrial cytochrome c oxidase gene 1 sequences (the DNA barcode) categorized all the 60 specimens into a single operational taxonomic unit, their Kimura 2 parameter (K2P) genetic variability being only 0.8%. The genetic differentiation (FST) and gene flow (Nm) estimates were 0.00799 and 62.07, respectively, indicating these two ‘species’ (S & T) as genetically con‐specific intermixing populations with negligible genetic differentiation. Earlier investigations have refuted the existence of species U. Also, this study demonstrated that An. fluviatilis and the closely related An. minimus could be taxonomically differentiated by the DNA Barcode approach (K2P = 5.0%).  相似文献   

18.
Extant populations of the European wildcat are fragmented across the continent, the likely consequence of recent extirpations due to habitat loss and over‐hunting. However, their underlying phylogeographic history has never been reconstructed. For testing the hypothesis that the European wildcat survived the Ice Age fragmented in Mediterranean refuges, we assayed the genetic variation at 31 microsatellites in 668 presumptive European wildcats sampled in 15 European countries. Moreover, to evaluate the extent of subspecies/population divergence and identify eventual wild × domestic cat hybrids, we genotyped 26 African wildcats from Sardinia and North Africa and 294 random‐bred domestic cats. Results of multivariate analyses and Bayesian clustering confirmed that the European wild and the domestic cats (plus the African wildcats) belong to two well‐differentiated clusters (average ФST = 0.159, Rst  = 0.392, P > 0.001; Analysis of molecular variance [AMOVA]). We identified from c. 5% to 10% cryptic hybrids in southern and central European populations. In contrast, wild‐living cats in Hungary and Scotland showed deep signatures of genetic admixture and introgression with domestic cats. The European wildcats are subdivided into five main genetic clusters (average ФST = 0.103, Rst  = 0.143, P > 0.001; AMOVA) corresponding to five biogeographic groups, respectively, distributed in the Iberian Peninsula, central Europe, central Germany, Italian Peninsula and the island of Sicily, and in north‐eastern Italy and northern Balkan regions (Dinaric Alps). Approximate Bayesian Computation simulations supported late Pleistocene–early Holocene population splittings (from c. 60 k to 10 k years ago), contemporary to the last Ice Age climatic changes. These results provide evidences for wildcat Mediterranean refuges in southwestern Europe, but the evolution history of eastern wildcat populations remains to be clarified. Historical genetic subdivisions suggest conservation strategies aimed at enhancing gene flow through the restoration of ecological corridors within each biogeographic units. Concomitantly, the risk of hybridization with free‐ranging domestic cats along corridor edges should be carefully monitored.  相似文献   

19.
Ticks of the genus Dermacentor are important vectors of human and animal pathogens in North America. They also carry a variety of endosymbiotic (i.e. non-pathogenic) bacteria. The American dog tick, D. variabilis, is known to be infected with gammaproteobacteria of the genus Arsenophonus. However, there have been no previous reports of Arsenophonus-type bacteria in the Rocky Mountain wood tick, D. andersoni, a species that is sympatric with D. variabilis in the western parts of its distributional range. In this study, the presence of Arsenophonus-type bacteria was determined by PCR and DNA sequencing for 338 D. andersoni and 448 D. variabilis adults from western Canada. Fifty-one (15%) of the D. andersoni were found to be infected with Arsenophonus, whereas only a single D. variabilis was infected. The prevalence of Arsenophonus in D. andersoni varied among localities (0–27%). The 16S rDNA sequences of Arsenophonus in Canadian D. andersoni and D. variabilis were identical to one another, but the results of a phylogenetic analysis showed that they were genetically distinct from, and may represent a different species to, the Arsenophonus in D. variabilis and Amblyomma americanum in eastern USA.  相似文献   

20.
Besides several exceptions, asexual metazoans are usually viewed as ephemeral sinks for genomes, which become ‘frozen’ in clonal lineages after their emergence from ancestral sexual species. Here, we investigated whether and at what rate the asexuals are able to introgress their genomes back into the parental sexual population, thus more or less importantly affecting the gene pools of sexual species. We focused on hybridogenetic hybrids of western Palaearctic water frogs (Pelophylax esculentus), which originate through hybridization between P. ridibundus and P. lessonae, but transmit only clonal ridibundus genome into their gametes. Although usually mating with P. lessonae, P. esculentus may upon mating with P. ridibundus or another hybrid produce sexually reproducing P. ridibundus offspring with the introgressed ex‐clonal genome. We compared the rate of nuclear amplified fragment length polymorphism (AFLP) and mitochondrial introgression in two types of populations, that is, those where P. ridibundus occurs in isolation and those where it lives with the hybridogens. Although significant differentiation (Φpt) between sexual and clonal ridibundus genomes suggested limited gene flow between sexuals and hybridogens, a non‐negligible (~5%) proportion of P. ridibundus bore introgressed mtDNA and AFLP markers. Whereas transfer of mtDNA was exclusively unidirectional, introgression of nuclear markers was bidirectional. The proportion of introgressed P. ridibundus was highest in syntopic populations with P. esculentus, proving an ongoing and site‐specific interspecific genetic transfer mediated by hybridogenetic hybrids. It turns out that asexual hybrids are not just a sink for genes of sexual species, but may significantly influence the genetic architecture of their sexual counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号