首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
N‐Acetyl‐L‐cysteine (NAC) can inhibit the luminol–H2O2, reaction, which is catalyzed by silver nanoparticles. Based on this phenomenon a new method was developed for NAC determination. Under optimum conditions, a linear relationship between chemiluminescence intensity and NAC concentration was found in the range 0.034–0.98 µg/mL. The detection limit was 0.010 µg/mL (S/N =3), and the relative standard deviation (RSD) was <5% for 0.480 µg/mL NAC (n =5). This simple, sensitive and inexpensive method has been applied to measure the concentration of NAC in pharmaceutical tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The adult mouse brain contains a population of constitutively proliferating subependymal cells that surround the lateral ventricle and are the direct progeny of the neural stem cell. Constitutively proliferating cells divide rapidly; 6 days after labeling, 60% of their progeny undergo cell death, 25% migrate to the olfactory bulbs, and 15% continue to proliferate within the subependyma. We have intraventricularly infused a cell survival factor N‐acetyl‐L ‐cysteine (NAC), which is known to have survival effects without concomitant proliferative effects on cells in vitro, and examined the resulting fate of cells spared from the normally occurring cell death. NAC infusion for 5 days results in a five‐fold increase in the number of retrovirally labeled subependymal cells compared to saline‐infused controls. The increase in the number of subependymal cells is directly proportional to the amount of time during which NAC is present and is not due to increased proliferation. While NAC is able to keep all the normally dying progeny alive, the cells spared from death remain confined to the subependyma lining the lateral ventricles and do not migrate to the olfactory bulbs (one normal fate of constitutively proliferating progeny) or into the surrounding brain parenchyma. When animals survive for an additional 6 days following NAC infusion, the number of retrovirally labeled subependymal cells returns to control values, indicating that the continued presence of NAC is necessary for cell survival. These data suggest that preventing cell death is not sufficient to keep all of the progeny of these cells in a proliferative mode. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 338–346, 2000  相似文献   

4.
Increased expression of COX‐2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX‐2 protects hepatocytes from several pro‐apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX‐2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX‐2 (hCOX‐2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post‐injection, Wt diabetic animals showed a decrease in PI3K activity and P‐Akt levels, an increase of P‐JNK, P‐p38, pro‐apoptotic Bad and Bax, release of cytochrome c and activities of caspases‐3 and ‐9, leading to an increased apoptotic index. This situation was improved in diabetic COX‐2 Tg. In addition, SID COX‐2 Tg showed increased expression of anti‐apoptotic Mcl‐1 and XIAP. Pro‐apoptotic state in the liver of diabetic animals was improved by over‐expression of COX‐2. We also analyzed the roles of high glucose‐induced apoptosis and hCOX‐2 in vitro. Non‐transfected and hCOX‐2‐transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non‐transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX‐2‐transfected cells was suppressed by addition of DFU (COX‐2 selective inhibitor), and mimicked by addition of PGE2 in non‐transfected cells. Taken together, these results demonstrate that hyperglycemia‐induced hepatic apoptosis is protected by hCOX‐2 expression. J. Cell. Biochem. 114: 669–680, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Imidacloprid, a widely used neonicotinoid insecticide, is toxic to silkworm (Bombyx mori). To explore whether N‐acetyl‐l ‐cysteine (NAC) has an effect on preventing silkworm (B. mori) from toxification caused by imidacloprid, we fed the fifth‐instar larvae with mulberry leaves dipped in 200 mg/L NAC solution before exposing in imidacloprid, and investigated the silkworm growth, survival rate, feed efficiency, cocoon quality, and the activities of antioxidant enzymes in midgut. The results showed that addition of NAC could significantly increase body weight, survival rate, and feed efficiency of imidacloprid poisoned silkworm larvae (P < 0.05), as well as cocoon mass, cocoon shell mass, and the ratio of cocoon shell (P < 0.05). Furthermore, it could significantly promote the activities of the antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxide in the midgut of fifth‐instar larvae under imidacloprid exposure at the late stage of treatment. In addition, it also could downregulate the malondialdehyde content. The results of our findings proved that the added NAC may have some beneficial effects on protection or restoration of antioxidant balance in imidacloprid exposed larvae.  相似文献   

6.
7.
8.
9.
Oxidative stress has been shown to induce apoptosis in cancer cells. Therefore, one might suspect that antioxidants may inhibit reactive oxygen species (ROS) and prevent apoptosis of cancer cells. No study has been carried out so far to elucidate the effects of N-acetylcysteine (NAC) on bleomycin-induced apoptosis in human testicular cancer (NCCIT) cells. We investigated the molecular mechanisms of apoptosis induced by bleomycin and the effect of NAC in NCCIT cells. We compared the effects of bleomycin on apoptosis with H2O2 which directly produces ROS. Strong antioxidant NAC was evaluated alone and in combination with bleomycin or H2O2 in germ cell tumor-derived NCCIT cell line (embryonal carcinoma, being the nonseminomatous stem cell component). We determined the cytotoxic effect of bleomycin and H2O2 on NCCIT cells and measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and cytochrome c (Cyt-c) levels in NCCIT cells incubated with bleomycin, H2O2, and/or NAC. We found half of the lethal dose (LD50) of bleomycin on NCCIT cell viability as 120???g/ml after incubation for 72?h. Incubation with bleomycin (LD50) induced increases in caspase-3, caspase-8, and caspase-9 activities and Cyt-c and Bax protein levels and a decrease in Bcl-2 level. Co-incubation of NCCIT cells with bleomycin and 10?mM NAC abolished bleomycin-induced increases in caspase-3 and caspase-9 activities, Bax, and Cyt-c levels and bleomycin-induced decrease in Bcl-2 level. Our results indicate that bleomycin induces apoptosis in NICCT cells and that NAC diminishes bleomycin-induced apoptosis via inhibiting the mitochondrial pathway. We conclude that NAC has negative effects on bleomycin-induced apoptosis in NICCT cells and causes resistance to apoptosis, which is not a desirable effect in the fight against cancer.  相似文献   

10.
11.
Pyrrolizidine alkaloid (PA) clivorine, isolated from traditional Chinese medicinal plant Ligularia hodgsonii Hook, has been shown to induce apoptosis in hepatocytes via mitochondrial‐mediated apoptotic pathway in our previous research. The present study was designed to observe the protection of N‐acetyl‐cysteine (NAC) on clivorine‐induced hepatocytes apoptosis. Our results showed that 5 mM NAC significantly reversed clivorine‐induced cytotoxicity via MTT and Trypan Blue staining assay. DNA apoptotic fragmentation analysis and Western‐blot results showed that NAC decreased clivorine‐induced apoptotic DNA ladder and caspase‐3 activation. Further results showed that NAC inhibited clivorine‐induced Bcl‐xL decrease, mitochondrial cytochrome c release and caspase‐9 activation. Intracellular glutathione (GSH) is an important ubiquitous redox‐active reducing sulfhydryl (? SH) tripeptide, and our results showed that clivorine (50 µM) decreased cellular GSH amounts and the ratio of GSH/GSSG in the time‐dependent manner, while 5 mM NAC obviously reversed this depletion. Further results showed that GSH synthesis inhibitor BSO augmented clivorine‐induced cytotoxicity, while exogenous GSH reversed its cytotoxicity on hepatocytes. Clivorine (50 µM) significantly induced cellular reactive oxygen species (ROS) generation. Further results showed that 50 µM Clivorine decreased glutathione peroxidase (GPx) activity and increased glutathione S transferase (GST) activity, which are both GSH‐related antioxidant enzymes. Thioredoxin‐1 (Trx) is also a ubiquitous redox‐active reducing (? SH) protein, and clivorine (50 µM) decreased cellular expression of Trx in a time‐dependent manner, while 5 mM NAC reversed this decrease. Taken together, our results demonstrate that the protection of NAC is major via maintaining cellular reduced environment and thus prevents clivorine‐induced mitochondrial‐mediated hepatocytes apoptosis. J. Cell. Biochem. 108: 424–432, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
Testicular cancer is a very common cancer in males aged 15–44 years. Bleomycin is used in chemotherapy regimens in the treatment of patients having testicular germ-cell tumor. Bleomycin generates oxygen radicals, induces oxidative cleavage of DNA strand and induces apoptosis in cancer cells. There is no study in the literature investigating effects of N-Acetyl-l-Cysteine (NAC) on bleomycin-induced oxidative stress in testicular germ cell tumors. For this reason, we studied effects of NAC on oxidative stress produced in wild-type NTera-2 and p53-mutant NCCIT testis cancer cells incubated with bleomycin and compared the results with H2O2 which directly produces oxidative stress. We determined protein carbonyl content, thiobarbituric acid reactive substances (TBARS), glutathione (GSH), 8-isoprostane, lipid hydroperoxide levels and total antioxidant capacity in both testicular cancer cells. Bleomycin and H2O2 significantly increased 8-isoprostane, TBARS, protein carbonyl and lipid hydroperoxide levels in NTera-2 and NCCIT cells. Bleomycin and H2O2 significantly decreased antioxidant capacity and GSH levels in both cell lines. Co-incubation with NAC significantly decreased lipid hydroperoxide, 8-isoprostane, protein carbonyl content and TBARS levels increased by bleomycin and H2O2. NAC enhanced GSH levels and antioxidant capacity in the NTera-2 and NCCIT cells. It can be concluded that NAC diminishes oxidative stress in human testicular cancer cells induced by bleomycin and H2O2.  相似文献   

15.
The regulation of trophoblast apoptosis is essential for normal placentation, and increased placental trophoblast cell apoptosis is the cause of pathologies such as intrauterine growth retardation (IUGR) and pre‐eclampsia. X‐linked inhibitor of apoptosis (XIAP) is expressed in trophoblasts, but little is known about the role of XIAP in placental development. In the present study, the function of XIAP in the placenta and in HTR‐8/SVneo trophoblasts under hypoxic conditions was examined. In addition, the correlation between XIAP and immortalization‐upregulated protein‐2 (IMUP‐2) was demonstrated in HTR‐8/SVneo trophoblasts under hypoxia, based on a previous study showing that increased IMUP‐2 induces trophoblast apoptosis and pre‐eclampsia. XIAP was downregulated in pre‐eclamptic placentas (P < 0.05). In HTR‐8/SVneo trophoblasts, XIAP expression was decreased and the expression of apoptosis‐related genes was increased in response to hypoxia. Ectopic expression of hypoxia inducible factor (HIF)‐1α in HRT‐8 SV/neo cells induced the nuclear translocation of XIAP and alterations of XIAP protein stability. Furthermore, hypoxia induced nuclear translocated XIAP co‐localized with upregulated IMUP‐2 in trophoblast nuclei, and the interaction between XIAP and IMUP‐2 induced apoptosis in HRT‐8 SV/neo cells. The present results suggest that hypoxia‐induced down‐regulation of XIAP mediates apoptosis in trophoblasts through interaction with increased IMUP‐2, and that this mechanism underlies the pathogenesis of pre‐eclampsia. J. Cell. Biochem. 114: 89–98, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
This study investigates the exposure of lead‐induced reactive oxygen species (ROS) generation, DNA damage, and apoptosis and also evaluates the therapeutic intervention using antioxidants in human renal proximal tubular cells (HK‐2 cells). Following treatment of HK‐2 cells with an increasing concentration of lead nitrate (0–50 μM) for 24 h, the intracellular ROS level increased whereas the GSH level decreased significantly in a dose‐dependent manner. Comet assay results revealed that lead nitrate showed the ability to increase the levels of DNA strand breaks in HK‐2 cells. Lead exposure also induced apoptosis through caspase‐3 activation at 30 μg/mL. Pretreatment with N‐acetylcysteine (NAC) and tannic acid showed a significant ameliorating effect on lead‐induced ROS, DNA damage, and apoptosis. In conclusion, lead induces ROS, which may exacerbate the DNA damage and apoptosis via caspase‐3 activation. Additionally, supplementation of antioxidants such as NAC and tannic acid may be used as salvage therapy for lead‐induced DNA damage and apoptosis in an exposed person.  相似文献   

17.
18.
Aurora‐A is a serine/threonine kinase that has oncogenic properties in vivo. The expression and kinase activity of Aurora‐A are up‐regulated in multiple malignancies. Aurora‐A is a key regulator of mitosis that localizes to the centrosome from the G2 phase through mitotic exit and regulates mitotic spindle formation as well as centrosome separation. Overexpression of Aurora‐A in multiple malignancies has been linked to higher tumor grade and poor prognosis through mechanisms that remain to be defined. Using an unbiased proteomics approach, we identified the protein nuclear mitotic apparatus (NuMA) as a robust substrate of Aurora‐A kinase. Using a small molecule Aurora‐A inhibitor in conjunction with a reverse in‐gel kinase assay (RIKA), we demonstrate that NuMA becomes hypo‐phosphorylated in vivo upon Aurora‐A inhibition. Using an alanine substitution strategy, we identified multiple Aurora‐A phospho‐acceptor sites in the C‐terminal tail of NuMA. Functional analyses demonstrate that mutation of three of these phospho‐acceptor sites significantly diminished cell proliferation. In addition, alanine mutation at these sites significantly increased the rate of apoptosis. Using confocal immunofluorescence microscopy, we show that the NuMA T1804A mutant mis‐localizes to the cytoplasm in interphase nuclei in a punctate pattern. The identification of Aurora‐A phosphorylation sites in NuMA that are important for cell cycle progression and apoptosis provides new insights into Aurora‐A function. J. Cell. Biochem. 114: 823–830, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Toxicological studies so far suggest that excessive use of malathion, an organophosphate insecticide, causes serious ill‐effects in mammalian reproductive physiology. The present study aims at assessing malathion‐induced toxicity in a dose‐ and time‐dependent manner with mitigating effects of N‐acetyl‐l ‐cysteine. The testicular germ cell viability was monitored using MTT assay, where NAC, being an antioxidant significantly reduced malathion‐induced toxicity by enhancing the frequency of cell viability. The histomorphological analysis showed that NAC successfully diminished several apoptotic features in testicular cells, induced by malathion. The differential EB/AO staining revealed a significant decline in the percentage of apoptosis after NAC supplementation. NAC also diminished the malathion‐induced DNA fragmentation along with significantly reduction in oxidative stress parameters causing decrease in lipid peroxidation and enhancement of ferric reducing antioxidant power within testicular germ cells. Thus, NAC mitigated the malathion‐induced toxicity, proving its potential in infertility treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号