首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane calcium ATPases (PMCAs) actively extrude Ca(2+) from the cell and are essential components in maintaining intracellular Ca(2+) homeostasis. There are four PMCA isoforms (PMCA1-4), and alternative splicing of the PMCA genes creates a suite of calcium efflux pumps. The role of these different PMCA isoforms in the control of calcium-regulated cell death pathways and the significance of the expression of multiple isoforms of PMCA in the same cell type are not well understood. In these studies, we assessed the impact of PMCA1 and PMCA4 silencing on cytoplasmic free Ca(2+) signals and cell viability in MDA-MB-231 breast cancer cells. The PMCA1 isoform was the predominant regulator of global Ca(2+) signals in MDA-MB-231 cells. PMCA4 played only a minor role in the regulation of bulk cytosolic Ca(2+), which was more evident at higher Ca(2+) loads. Although PMCA1 or PMCA4 knockdown alone had no effect on MDA-MB-231 cell viability, silencing of these isoforms had distinct consequences on caspase-independent (ionomycin) and -dependent (ABT-263) cell death. PMCA1 knockdown augmented necrosis mediated by the Ca(2+) ionophore ionomycin, whereas apoptosis mediated by the Bcl-2 inhibitor ABT-263 was enhanced by PMCA4 silencing. PMCA4 silencing was also associated with an inhibition of NFκB nuclear translocation, and an NFκB inhibitor phenocopied the effects of PMCA4 silencing in promoting ABT-263-induced cell death. This study demonstrates distinct roles for PMCA1 and PMCA4 in the regulation of calcium signaling and cell death pathways despite the widespread distribution of these two isoforms. The targeting of some PMCA isoforms may enhance the effectiveness of therapies that act through the promotion of cell death pathways in cancer cells.  相似文献   

2.
Cisplatin is a commonly used chemotherapeutic agent; however, the development of acquired resistance limits its application. Here, we demonstrate that 2‐deoxy‐d ‐glucose (2‐DG) enhanced the antitumor effects of cisplatin in SKOV3 cells, which include inhibition of proliferation and promotion of apoptosis. Additionally, either cisplatin or 2‐DG alone could upregulate the endoplasmic reticulum (ER) stress‐associated protein glucose‐regulated protein‐78 (GRP78). Moreover, exposure to 2‐DG increased the expression of GRP78 induced by cisplatin. Cisplatin also upregulated ER stress‐associated apoptotic protein 153/C/EBP homology protein (CHOP) in SKOV3 cells. While treatment with 2‐DG alone could not upregulate the CHOP expression, a combination of both 2‐DG and cisplatin increased the protein levels of CHOP above those induced by Cisplatin alone. Finally, cisplatin mediated an increase in ATP stores within acidic vesicles, whereas 2‐DG decreased this effect. These data demonstrate that 2‐DG sensitizes SKOV3 cells to cisplatin by increasing ER stress and decreasing ATP stores in acidic vesicles.  相似文献   

3.
The pancreatic acinar cell is the main parenchymal cell of the exocrine pancreas and plays a primary role in the secretion of pancreatic enzymes into the pancreatic duct. It is also the site for the initiation of pancreatitis. Here we describe how acinar cells are isolated from whole pancreas tissue and intracellular calcium signals are measured. In addition, we describe the techniques of transfecting these cells with adenoviral constructs, and subsequently measuring the leakage of lactate dehydrogenase, a marker of cell injury, during conditions that induce acinar cell injury in vitro. These techniques provide a powerful tool to characterize acinar cell physiology and pathology.  相似文献   

4.
Peripheral neuropathy is one of the most severe and irreversible side effects caused by treatment from several chemotherapeutic drugs, including paclitaxel (Taxol®) and vincristine. Strategies are needed that inhibit this unwanted side effect without altering the chemotherapeutic action of these drugs. We previously identified two proteins in the cellular pathway that lead to Taxol-induced peripheral neuropathy, neuronal calcium sensor-1 (NCS-1) and calpain. Prolonged treatment with Taxol induces activation of calpain, degradation of NCS-1, and loss of intracellular calcium signaling. This paper has focused on understanding the molecular basis for prevention of peripheral neuropathy by testing the effects of addition of two candidate compounds to the existing chemotherapeutic drug regime: lithium and ibudilast. We found that the co-administration of either lithium or ibudilast to neuroblastoma cells that were treated with Taxol or vincristine inhibited activation of calpain and the reductions in NCS-1 levels and calcium signaling associated with these chemotherapeutic drugs. The ability of Taxol to alter microtubule formation was unchanged by the addition of either candidate compound. These results allow us to suggest that it is possible to prevent the unnecessary and irreversible damage caused by chemotherapeutic drugs while still maintaining therapeutic efficacy. Specifically, the addition of either lithium or ibudilast to existing chemotherapy treatment protocols has the potential to prevent chemotherapy-induced peripheral neuropathy.  相似文献   

5.
The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.  相似文献   

6.
Dematin is a broadly expressed membrane cytoskeletal protein that has been well characterized in erythrocytes and to a lesser extent in non-erythroid cells. However, dematin''s function in platelets is not known. Here, we show that dematin is abundantly expressed in both human and mouse platelets. Platelets harvested from the dematin headpiece knock-out (HPKO) mouse model exhibit a striking defect in the mobilization of calcium in response to multiple agonists of platelet activation. The reduced calcium mobilization in HPKO platelets is associated with concomitant inhibition of platelet aggregation and granule secretion. Integrin αIIbβ3 activation in response to agonists is attenuated in the HPKO platelets. The mutant platelets show nearly normal spreading on fibrinogen and an unaltered basal cAMP level; however, the clot retraction was compromised in the mutant mice. Immunofluorescence analysis indicated that dematin is present both at the dense tubular system and plasma membrane fractions of platelets. Proteomic analysis of dematin-associated proteins in human platelets identified inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) as a binding partner, which was confirmed by immunoprecipitation analysis. IP3KB, a dense tubular system protein, is a major regulator of calcium homeostasis. Loss of the dematin headpiece resulted in a decrease of IP3KB at the membrane and increased levels of IP3KB in the cytosol. Collectively, these findings unveil dematin as a novel regulator of internal calcium mobilization in platelets affecting multiple signaling and cytoskeletal functions. Implications of a conserved role of dematin in the regulation of calcium homeostasis in other cell types will be discussed.  相似文献   

7.
A large variety of cation transport systems are involved in the regulation of calcium homeostasis in endothelial cells. The focus of the present study is to determine the contribution of nonselective cation channels from the TRP (transient receptor potential) family to cellular calcium homeostasis of porcine aortic endothelial cells (PAEC). One member of the TRPV (vanniloid) subfamily, TRPV4, has previously been shown to be involved in cation transport induced by a large variety of stimulations including osmolarity, temperature, mechanical stress, and phosphorylation. Here, we demonstrate the existence of several TRP proteins, including TRPV4, in PAEC using RT-PCR. To test whether this channel is functional, we performed FURA-2 calcium measurements and whole-cell patch-clamp experiments. We observed the induction of large calcium signals following mechanical stress, altered extracellular temperature, and the selective TRPV4 activator 4-α -PDD. These effects were diminished in the presence of the TRPV4 inhibitor miconazole, suggesting the involvement of this channel in mediating endothelial calcium signals. The large amounts of transported calcium and the short signaling ways suggest a potentially important role of this channel in many physiological processes.  相似文献   

8.
Cancer is the second leading cause of deaths worldwide. Despite concerted efforts to improve the current therapies, the prognosis of cancer remains dismal. Highly selective or specific blocking of only one of the signaling pathways has been associated with limited or sporadic responses. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment. Icariside II, a flavonol glycoside, is one of the major components of Traditional Chinese Medicine Herba epimedii and possesses multiple biological and pharmacological properties including anti-inflammatory, anti-osteoporosis, anti-oxidant, anti-aging, and anticancer activities. Recently, the anticancer activity of Icariside II has been extensively investigated. Here, in this review, our aim is to give our perspective on the current status of Icariside II, and discuss its natural sources, anticancer activity, molecular targets and the mechanisms of action with specific emphasis on apoptosis pathways which may help the further design and conduct of preclinical and clinical trials.Icariside II has been found to induce apoptosis in various human cancer cell lines of different origin by targeting multiple signaling pathways including STAT3, PI3K/AKT, MAPK/ERK, COX-2/PGE2 and β-Catenin which are frequently deregulated in cancers, suggesting that this collective activity rather than just a single effect may play an important role in developing Icariside II into a potential lead compound for anticancer therapy. This review suggests that Icariside II provides a novel opportunity for treatment of cancers, but additional investigations and clinical trials are still required to fully understand the mechanism of therapeutic effects to further validate it in anti-tumor therapy.  相似文献   

9.
Lafora disease (LD) is a teenage-onset inherited progressive myoclonus epilepsy characterized by the accumulations of intracellular inclusions called Lafora bodies and caused by mutations in protein phosphatase laforin or ubiquitin ligase malin. But how the loss of function of either laforin or malin causes disease pathogenesis is poorly understood. Recently, neuronatin was identified as a novel substrate of malin that regulates glycogen synthesis. Here we demonstrate that the level of neuronatin is significantly up-regulated in the skin biopsy sample of LD patients having mutations in both malin and laforin. Neuronatin is highly expressed in human fetal brain with gradual decrease in expression in developing and adult brain. However, in adult brain, neuronatin is predominantly expressed in parvalbumin-positive GABAergic interneurons and localized in their processes. The level of neuronatin is increased and accumulated as insoluble aggregates in the cortical area of LD brain biopsy samples, and there is also a dramatic loss of parvalbumin-positive GABAergic interneurons. Ectopic expression of neuronatin in cultured neuronal cells results in increased intracellular Ca2+, endoplasmic reticulum stress, proteasomal dysfunction, and cell death that can be partially rescued by malin. These findings suggest that the neuronatin-induced aberrant Ca2+ signaling and endoplasmic reticulum stress might underlie LD pathogenesis.  相似文献   

10.
The present study examined the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) and adipose‐derived mesenchymal stem cells (AD‐MSCs) in methotrexate (MTX)‐induced pulmonary fibrosis in rats as compared with dexamethasone (Dex). MTX (14 mg/kg, as a single dose/week for 2 weeks, p.o.) induced lung fibrosis as marked by elevation of relative lung weight, malondialdehyde, nitrite/nitrate, interleukin‐4, transforming growth factor‐β1, deposited collagen, as well as increased expression of Bax along with the reduction of reduced glutathione content and superoxide dismutase activity. These deleterious effects were antagonized after treatment either with BM‐MSCs or AD‐MSCs (2 × 106 cells/rat) 2 weeks after MTX to even a better extent than Dex (0.5 mg/kg/ for 7 days, p.o.). In conclusion, BM‐MSC and AD‐MSCs possessed antioxidant, antiapoptotic, as well as antifibrotic effects, which will probably introduce them as remarkable candidates for the treatment of pulmonary fibrosis.  相似文献   

11.
GRP78, a molecular chaperone with critical endoplasmic reticulum functions, is aberrantly expressed on the surface of cancer cells, including prostate and melanoma. Here it functions as a pro-proliferative and anti-apoptotic signaling receptor via NH2-terminal domain ligation. Auto-antibodies to this domain may appear in cancer patient serum where they are a poor prognostic indicator. Conversely, GRP78 COOH-terminal domain ligation is pro-apoptotic and anti-proliferative. There is no method to disrupt cell-surface GRP78 without compromising the total GRP78 pool, making it difficult to study cell-surface GRP78 function. We studied six cell lines representing three cancer types. One cell line per group expresses high levels of cell-surface GRP78, and the other expresses low levels (human hepatoma: Hep3B and HepG2; human prostate cancer: PC3 and 1-LN; murine melanoma: B16F0 and B16F1). We investigated the effect of Escherichia coli subtilase cytoxin catalytic subunit (SubA) on GRP78. We report that SubA specifically cleaves cell-surface GRP78 on HepG2, 1-LN, and B16F1 cells without affecting intracellular GRP78. B16F0 cells (GRP78low) have lower amounts of cleaved cell-surface GRP78. SubA has no effect on Hep3B and PC3 cells. The predicted 28-kDa GRP78 COOH-terminal fragment is released into the culture medium by SubA treatment, and COOH-terminal domain signal transduction is abrogated, whereas pro-proliferative signaling mediated through NH2-terminal domain ligation is unaffected. These experiments clarify cell-surface GRP78 topology and demonstrate that the COOH-terminal domain is necessary for pro-apoptotic signal transduction occurring upon COOH-terminal antibody ligation. SubA is a powerful tool to specifically probe the functions of cell-surface GRP78.  相似文献   

12.
Abstract: Fura-2 digital imaging microfluorimetry was used to evaluate the Ca2+ signals generated in single clonal human neuroepithelioma cells (SK-N-MCIXC) in response to agonists that stimulate phosphoinositide hydrolysis. Addition of optimal concentrations of either endothelin-1 (ET-1), ATP, oxotremorine-M (Oxo-M), or norepinephrine (NE) all resulted in an increase in the concentration of cytosolic calcium (Ca2+i) but of different magnitudes (ET-1 = ATP> NE). The Ca2+ signals elicited by the individual agonists also differed from each other in terms of their latency of onset, rate of rise and decay, and prevalence of a sustained phase of Ca2+ influx. The Ca2+ signals that occurred in response to ATP had a shorter latency and more rapid rates of rise and decay than those observed for the other three agonists. Furthermore, a sustained plateau phase of the Ca2+ signal, which was characteristic of the response to Oxo-M, was observed in <40% of cells stimulated with ET-1 and absent from Ca2+ signals elicited after NE addition. Removal of extracellular Ca2+ enhanced the rate of decay of Ca2+ signals generated by ATP, ET-1, or Oxo-M and, when evident, abolished the sustained phase of Ca2+ influx. In the absence of extracellular Ca2+, NE elicited asynchronous multiple Ca2+ transients. In either the absence or presence of extracellular Ca2+,>94% of cells responded to ET-1 or ATP, whereas corresponding values for Oxo-M and NE were ~74 and ~48%. Sequential addition of agonists to cells maintained in a Ca2+-free buffer indicated that each ligand mobilized Ca2+ from a common intracellular pool. When monitored as a release of a total inositol phosphate fraction, all four agonists elicited similar (four- to sixfold) increases in phosphoinositide hydrolysis. However, the addition of ET-1 or ATP resulted in larger increases in the net formation of inositol 1,4,5-trisphosphate than did either Oxo-M or NE. These results indicate that, in SK-N-MCIXC cells, the characteristics of both Ca2+ signaling and inositol phosphate production are agonist specific.  相似文献   

13.
A series of N‐substituted pyrazole derivatives have been synthesized and tested for their anticancer effect on the HL‐60 leukaemia cell line. Four were active both in cell‐growth inhibition and in inducing apoptosis. The inhibition of cell growth mainly reflects a compound‐induced reduction in the number of cells in phases from S to M, whereas the induction of apoptosis involves inhibition of expression of Bcl‐2 and enhanced expression of Bax with consequent reduced activation of the proapoptotic caspase 3. Finally, preliminary experiments carried out with tumor cells from myelogenous leukaemic patients showed that the compounds 4c, 4l, 4m , and 4n are indeed capable of inducing apoptosis.  相似文献   

14.
Deletion of GnT-V (MGAT5), which synthesizes N-glycans with β(1,6)-branched glycans, reduced the compartment of cancer stem cells (CSC) in the her-2 mouse model of breast cancer, leading to delay of tumor onset. Because GnT-V levels are also commonly up-regulated in colon cancer, we investigated their regulation of colon CSC and adenoma development. Anchorage-independent cell growth and tumor formation induced by injection of colon tumor cells into NOD/SCID mice were positively associated with GnT-V levels, indicating regulation of proliferation and tumorigenicity. Using Apcmin/+ mice with different GnT-V backgrounds, knock-out of GnT-V had no significant effect on the number of adenoma/mouse, but adenoma size was significantly reduced and accompanied increased survival of Apcmin/+ mice with GnT-V deletion (p < 0.01), suggesting an inhibition in the progression of colon adenoma caused by deletion of GnT-V. Decreased expression levels of GnT-V down-regulated the population of colon (intestine) CSC, affecting their ability for self-renewal and tumorigenicity in NOD/SCID mice. Furthermore, altered nuclear translocation of β-catenin and expression of Wnt target genes were positively associated with expression levels of GnT-V, indicating the regulation of canonical Wnt/β-catenin signaling. By overexpressing the Wnt receptor, FZD-7, in colon cancer cells, we found that FZD-7 receptors expressed N-linked β(1,6) branching, indicating that FZD-7 can be modified by GnT-V. The aberrant Wnt signaling observed after modulating GnT-V levels is likely to result from altered N-linked β(1,6) branching on FZD-7, thereby affecting Wnt signaling, the compartment of CSC, and tumor progression.  相似文献   

15.
Skin cancer is the most common cancer in the United States and is mainly caused by environmental UV radiation. Reducing skin cancer incidence is becoming an urgent issue. The stress-inducible protein Sestrin2 (Sesn2) plays an important role in maintaining redox and metabolic homeostasis and their related pathologies. However, the role of Sesn2 in cancer remains unclear. Here we show that UVB radiation induces Sesn2 expression in normal human keratinocytes, mouse skin, normal human melanocytes, and melanoma cells. In addition, Sesn2 promotes AKT activation through a PTEN-dependent mechanism. Sesn2 deletion or knockdown sensitizes squamous cell carcinoma (SCC) cells to 5-fluorouracil-induced apoptosis and melanoma cells to UVB- and vemurafenib-induced apoptosis. In mice Sesn2 knockdown suppresses tumor growth from injected human SCC and melanoma cells. Last, as compared with normal skin, Sesn2 is up-regulated in both human skin SCC and melanoma. Our findings demonstrate that Sesn2 promotes AKT activation and survival in response to UVB stress and chemotherapeutics and suggest that Sesn2 is oncogenic in skin SCC and melanoma.  相似文献   

16.
Twenty‐eight taraxastane‐type triterpenoid derivatives 4  –  31 were prepared from the naturally occurring triterpenoids faradiol ( 1 ) and heliantriol C ( 3 ). The cytotoxic activities of these compounds and arnidiol ( 2 ) were evaluated in leukemia (HL60), lung (A549), duodenal (AZ521), and breast (SK‐BR‐3) cancer cell lines. 21‐Oxoarnidiol ( 18 ) and faradiol 3,16‐di‐O‐l ‐alaninate ( 31 ) exhibited potent cytotoxicity, with 50% inhibitory concentrations of 0.5 – 2.7 μm . In particular, flow cytometric analysis indicated that compound 31 induced typical apoptotic cell death in HL60 cells. These results suggested that taraxastane‐type triterpenoid derivatives might provide useful antitumor agents with apoptosis‐inducing activity.  相似文献   

17.
S1P is involved in the regulation of multiple biological processes (cell survival, growth, migration and differentiation) both in neurons and glial cells. The study was aimed at investigating the possible effects of S1P on calcium signaling in cerebellar astrocytes and differentiated granule cells. In cerebellar astrocytes S1P is able to mediate calcium signaling mainly through Gi protein coupled receptors, whereas in differentiated neurons it failed to evoke any calcium signaling, despite acting both extracellularly and intracellularly. The data indicate strict cell specificity in S1P-evoked calcium response, which could be relevant to communication between neurons and glial cells in the cerebellum.  相似文献   

18.
This study aims to evaluate the cytotoxicity and responses of the cellular antioxidant system of 1‐octyl‐3‐methylimidazolium chloride ([C8mim][Cl]) on human hepatocarcinoma QGY‐7701 cells. The results show that [C8mim][Cl] can inhibit QGY‐7701 cell growth and decrease their viabilities in a dose‐dependent manner. The results also reveal that [C8mim][Cl] exposure can induce apoptosis in the [C8mim][Cl]‐treated QGY‐7701 cells. In addition, the results of biochemical assays show that [C8mim][Cl] exposure causes overproduction of reactive oxygen species (ROS), inhibits superoxide dismutase (SOD) and catalase (CAT) activities, decreases reduced glutathione (GSH) content, and increases the cellular malondialdehyde (MDA) level. These results suggest that ROS‐mediated oxidative stress may be responsible for the apoptosis induced by [C8mim][Cl] in QGY‐7701 cells. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:330‐336, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21495  相似文献   

19.
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.  相似文献   

20.
Pyk2 was identified as a Ca2+-dependent kinase, however, the regulation of Pyk2 by Ca2+ in T cells remains controversial. We found that Ca2+ mobilization preferentially induced Pyk2 phosphorylation in cytotoxic T lymphocytes (CTL). Furthermore, Pyk2 phosphorylation in CTL was not absolutely Ca2+ dependent but relied on the strength of T cell receptor stimulation. Ionomycin-stimulated Pyk2 phosphorylation did not require calmodulin activity, because phosphorylation was not inhibited by the calmodulin inhibitor W7, and we detected no Ca2+-regulated association between Pyk2 and calmodulin. Ca2+-stimulated Pyk2 phosphorylation was dependent on Src-family kinase activity, even at the Pyk2 autophosphorylation site. We sought to identify a Ca2+-regulated pathway that could trigger Pyk2 phosphorylation in T cells and found that ionomycin stimulated the production of reactive oxygen species and an H2O2 scavenger inhibited ionomycin-induced Pyk2 phosphorylation. Additionally, H2O2 induced strong Erk activation and ionomycin-stimulated Pyk2 phosphorylation was Erk dependent. These data support the conclusion that Ca2+ mobilization induces the production of reactive oxygen species, which in turn activate the Erk pathway, leading to Src-family kinase-dependent Pyk2 phosphorylation. Our data demonstrate that Pyk2 is not a Ca2+-dependent kinase in T cells but instead, increased intracellular Ca2+ induces Pyk2 phosphorylation through production of reactive oxygen species. These findings are consistent with the possibility that Pyk2 acts as an early sensor of numerous extracellular signals that trigger a Ca2+ flux and/or reactive oxygen species to amplify tyrosine phosphorylation signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号