首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.  相似文献   

2.
Contemporary and historical factors influence assemblage structure. The environmental and spatial influences acting on fish organization of rain forest coastal streams in the Atlantic rain forest of Brazil were examined. Fish (and functional traits such as morphology, diet, velocity preference, body size), environmental variables (pH, water conductivity, dissolved oxygen, temperature, stream width, flow, depth, substrate), and altitude were measured from 59 stream reaches. Asymmetric eigenvector maps were used to model the spatial structure considering direction of fish movements. Elevation played an important role—fish abundance, biomass, and richness all decrease with increasing elevation. Fish communities are influenced by both environmental and spatial factors, but downstream movements were shown to be more important in explaining the observed spatial variation than were bidirectional and upstream movements. Spatial factors, as well as environmental variables influenced by the spatial structure, explained most of the variation in fish assemblages. The strong spatial structuring is probably attributable to asymmetric dispersal limitation along the altitudinal profile: Dispersal is likely to be more limiting moving upstream than downstream. These fish assemblages reflect scale-dependent processes: At the stream-reach scale, fish respond to local environmental filters (habitat structure, water chemistry, and food supply), which are in turn influenced by a larger scale, namely the altitudinal gradient expected in steep coastal mountains. Thus, environmental drivers are not independent of spatial factors, and the effects of local factors can be confounded across the altitudinal gradient. These results may have implications for conservation, because downstream reaches are often neglected in management and conservation plans.  相似文献   

3.
The positive relationship between spatial environmental heterogeneity and species diversity is a widely accepted concept, generally associated with niche limitation. However, niche limitation cannot account for negative heterogeneity–diversity relationships (HDR) revealed in several case studies. Here we explore how HDR varies at different spatial scales and provide novel theories for small‐scale species co‐existence that explain both positive and negative HDR. At large spatial scales of heterogeneity (e.g. landscape level), different communities co‐exist, promoting large regional species pool size and resulting in positive HDR. At smaller scales within communities, species co‐existence can be enhanced by increasing the number of different patches, as predicted by the niche limitation theory, or alternatively, restrained by heterogeneity. We conducted meta‐regressions for experimental and observational HDR studies, and found that negative HDRs are significantly more common at smaller spatial scales. We propose three theories to account for niche limitation at small spatial scales. (1) Microfragmentation theory: with increasing spatial heterogeneity, large homogeneous patches lose area and become isolated, which in turn restrains the establishment of new plant individuals and populations, thus reducing species richness. (2) Heterogeneity confounded by mean: when heterogeneity occurs at spatial scales smaller than the size of individual plants, which forage through the patches, species diversity can be either positively or negatively affected by a change in the mean of an environmental factor. (3) Heterogeneity as a separate niche axis: the ability of species to tolerate heterogeneity at spatial scales smaller than plant size varies, affecting HDR. We conclude that processes other than niche limitation can affect the relationship between heterogeneity and diversity.  相似文献   

4.
5.
One potential evolutionary response to environmental heterogeneity is the production of randomly variable offspring through developmental instability, a type of bet‐hedging. I used an individual‐based, genetically explicit model to examine the evolution of developmental instability. The model considered both temporal and spatial heterogeneity alone and in combination, the effect of migration pattern (stepping stone vs. island), and life‐history strategy. I confirmed that temporal heterogeneity alone requires a threshold amount of variation to select for a substantial amount of developmental instability. For spatial heterogeneity only, the response to selection on developmental instability depended on the life‐history strategy and the form and pattern of dispersal with the greatest response for island migration when selection occurred before dispersal. Both spatial and temporal variation alone select for similar amounts of instability, but in combination resulted in substantially more instability than either alone. Local adaptation traded off against bet‐hedging, but not in a simple linear fashion. I found higher‐order interactions between life‐history patterns, dispersal rates, dispersal patterns, and environmental heterogeneity that are not explainable by simple intuition. We need additional modeling efforts to understand these interactions and empirical tests that explicitly account for all of these factors.  相似文献   

6.
Questions: Are liana–host interactions structured at the community level? Do liana–host interactions differ between species, growth form guilds or habitats? Location: Otari‐Wilton's Bush, on the southern tip of North Island, New Zealand. The forest contains 75 ha of mature and regenerating conifer–broadleaf forest. Methods: Nine liana species were quantified among 217 trees to test for negative co‐occurrence patterns. We also conducted additional analyses within and among compartments embedded in the community‐level matrix. Liana and host abundance distributions were assessed across two contrasting habitats. Results: Community‐level analyses revealed negative co‐occurrence patterns. Positive, neutral and negative co‐occurrence patterns were found among compartments within the community‐level matrix. Host species compartments were consistent with randomized expectations, while positive co‐occurrence patterns were found within the host species matrix. Negative co‐occurrence patterns were found inconsistently among lianas that share the same region of host space, and those that do not. Conclusions: Overall, results indicate the liana community is structured non‐randomly. Liana–host interactions appear to follow an opportunistic growth strategy and interactions are due mostly to habitat partitioning.  相似文献   

7.
8.
The question of whether species co‐occurrence is random or deterministic has received considerable attention, but little is known about how anthropogenic disturbance mediates the outcomes. By combining experiments, field surveys and analysis against null models, we tested the hypothesis that anthropogenic habitat modification disrupts species co‐occurrence in stream invertebrates across spatial scales. Whereas communities in unmodified conditions were structured deterministically with significant species segregation, catchment‐scale conversion to agriculture and sediment deposition at the patch‐ or micro‐habitat scale apparently randomized species co‐occurrences. This shift from non‐random to random was mostly independent of species richness, abundance and spatial scale. Data on community‐wide life‐history traits (body size, dispersal ability and predatory habits) and beta‐diversity indicated that anthropogenic modification disrupted community assembly by affecting biotic interactions and, to a lesser extent, altering habitat heterogeneity. These data illustrate that the balance between predictable and stochastic patterns in communities can reflect anthropogenic modifications that not only transcend scales but also change the relative forces that determine species coexistence. Research into the effects of habitat modification as a key to understanding global change should extend beyond species richness and composition to include species co‐occurrence, species interactions and any functional consequences.  相似文献   

9.
1. Quantifying the relative importance of environmental filtering versus regional spatial structuring has become an intensively studied area in the context of metacommunity ecology. However, most studies have evaluated the role of environmental and spatial processes using taxonomic data sets of single snapshot surveys. 2. Here, we examined temporal changes in patterns and possible processes behind the functional metacommunity organization of stream fishes in a human‐modified landscape. Specifically, we (i) studied general changes in the functional composition of fish assemblages among 40 wadeable stream sites during a 3‐year study period in the catchment area of Lake Balaton, Hungary, (ii) quantified the relative importance of spatial and environmental factors as determinants of metacommunity structure and (iii) examined temporal variability in the relative role of spatial and environmental processes for this metacommunity. 3. Partial triadic analysis showed that assemblages could be effectively ordered along a functional gradient from invertebrate consuming species dominated by the opportunistic life‐history strategy, to assemblages with a diverse array of functional attributes. The analysis also revealed that functional fish assemblage structure was moderately stable among the sites between the sampling periods. 4. Despite moderate stability, variance partitioning using redundancy analyses (RDA) showed considerable temporal variability in the contribution of environmental and spatial factors to this pattern. The analyses also showed that environmental variables were, in general, more important than spatial ones in determining metacommunity structure. Of these, natural environmental variables (e.g. altitude, velocity) proved to be more influential than human‐related effects (e.g. pond area, % inhabited area above the site, nutrient enrichment), even in this landscape with relatively low variation in altitude and stream size. 5. Pond area was, however, the most important human stressor variable that was positively associated with the abundance of non‐native species with diverse functional attributes. The temporal variability in the relative importance of environmental and spatial factors was probably shaped by the release of non‐native fish from fish ponds to the stream system during flood events. 6. To conclude, both spatial processes and environmental control shape the functional metacommunity organization of stream fish assemblages in human‐modified landscapes, but their importance can vary in time. We argue, therefore, that metacommunity studies should better consider temporal variability in the ecological mechanisms (e.g. dispersal limitation, species sorting) that determine the dynamics of landscape‐level community organization.  相似文献   

10.
Manipulations of substrate size and components of heterogeneity were designed to test their independent effects and interactions on the abundance and species richness of stream macroinvertebrates. Two components of substrate heterogeneity, variation in size class proportions and number of size classes, had no independent effect on abundance or richness; and in general did not interact with median particle size. Median particle size, stream current, and detritus accounted for most of the significant variation in macroinvertebrates colonizing the experimental substrates. Rocks with high surface heterogeneity (roughness) were colonized by more individuals (but not taxa) than rocks with low surface heterogeneity.  相似文献   

11.
Genetic diversity and spatial structure of populations are important for antagonistic coevolution. We investigated genetic variation and population structure of three closely related European ant species: the social parasite Harpagoxenus sublaevis and its two host species Leptothorax acervorum and Leptothorax muscorum. We sampled populations in 12 countries and analysed eight microsatellite loci and an mtDNA sequence. We found high levels of genetic variation in all three species, only slightly less variation in the host L. muscorum. Using a newly introduced measure of differentiation (Jost’s Dest ), we detected strong population structuring in all species and less male‐biased dispersal than previously thought. We found no phylogeographic patterns that could give information on post‐glacial colonization routes – northern populations are as variable as more southern populations. We conclude that conditions for Thompson’s geographic mosaic of coevolution are ideal in this system: all three species show ample genetic variation and strong population structure.  相似文献   

12.
13.
14.
There is a rich amount of information in co‐occurrence (presence–absence) data that could be used to understand community assembly. This proposition first envisioned by Forbes (1907) and then Diamond (1975) prompted the development of numerous modelling approaches (e.g. null model analysis, co‐occurrence networks and, more recently, joint species distribution models). Both theory and experimental evidence support the idea that ecological interactions may affect co‐occurrence, but it remains unclear to what extent the signal of interaction can be captured in observational data. It is now time to step back from the statistical developments and critically assess whether co‐occurrence data are really a proxy for ecological interactions. In this paper, we present a series of arguments based on probability, sampling, food web and coexistence theories supporting that significant spatial associations between species (or lack thereof) is a poor proxy for ecological interactions. We discuss appropriate interpretations of co‐occurrence, along with potential avenues to extract as much information as possible from such data.  相似文献   

15.
16.
Abstract In the presence of permanent spatial heterogeneity, local dispersal, especially short‐range dispersal, can facilitate coexistence by concentrating low‐density species in the areas where their rates of increase are higher. We present a framework for predicting the effects of local dispersal on coexistence for arbitrary forms of dispersal and arbitrary spatial patterns of environmental variation. Using the lottery model as an example, we find that local dispersal contributes to coexistence by enhancing the effects of environmental variation on scales longer than typical dispersal distances, which can be characterized solely by the variance of the dispersal kernel. Higher moments of the dispersal kernel are not important.  相似文献   

17.
In this study, the co‐occurrence patterns of 618 pest insects for 47 host crops, including vegetables, grains, and fruits, were identified. To identify the pest co‐occurrence patterns for various crops, and the interactions among the pest insects and crops, we employed social network analysis methods. We used three traditional centrality measures (degree, closeness, and eigenvector) to determine the relative significance of each crop and pest as a node in the network. Throughout the network analysis, crops and pest nodes were divided into six groups, based on modularity. Crops in the same group could be considered as alternate hosts for pests from the same group. There were clear differences in the cultural practices between groups (i.e., dryland farming versus wetland farming). This indicated that dryland crop pests do not use wetland crops as resources. Pome fruit trees, such as apple and pear, had high centrality indices, which indicated the importance of these crops in the network and their high vulnerability to damage by a multitude of pests. In this study, although it was assumed that all crops were cultivated on the same piece of land during a single growing season, the complex interactions between the whole units were visualized and analyzed as a computable network.  相似文献   

18.
The study of the spatial distribution of relatives in a population under contrasted environmental conditions provides critical insights into the flexibility of dispersal behaviour and the role of environmental conditions in shaping population relatedness and social structure. Yet few studies have evaluated the effects of fluctuating environmental conditions on relatedness structure of solitary species in the wild. The aim of this study was to determine the impact of interannual variations in environmental conditions on the spatial distribution of relatives [spatial genetic structure (SGS)] and dispersal patterns of a wild population of eastern chipmunks (Tamias striatus), a solitary rodent of North America. Eastern chipmunks depend on the seed of masting trees for reproduction and survival. Here, we combined the analysis of the SGS of adults with direct estimates of juvenile dispersal distance during six contrasted years with different dispersal seasons, population sizes and seed production. We found that environmental conditions influences the dispersal distances of juveniles and that male juveniles dispersed farther than females. The extent of the SGS of adult females varied between years and matched the variation in environmental conditions. In contrast, the SGS of males did not vary between years. We also found a difference in SGS between males and females that was consistent with male‐biased dispersal. This study suggests that both the dispersal behaviour and the relatedness structure in a population of a solitary species can be relatively labile and change according to environmental conditions.  相似文献   

19.
1. Temporary streams comprise a large proportion of the total length of most stream networks, and the great majority of arid‐land stream networks, so it is important to understand their contribution to biotic diversity at both local and landscape scales. 2. In late winter 2010, we sampled invertebrate assemblages in 12 reaches of a large arid‐land stream network (including perennial and intermittent headwaters, intermittent middle reaches and perennial rivers) in south‐east Arizona, U.S.A. Intermittent reaches had then been flowing for c. 60 days, following a dry period of more than 450 days. We sampled a subset of the perennial study reaches three more times between 2009 and 2011. Since intermittent reaches were dry during these additional sampling periods, we used assemblage data from two other intermittent streams in the study network (sampled in 2004–05 and 2010) to explore interannual variability in intermittent stream assemblage composition. 3. Invertebrate richness was lowest in intermittent reaches, despite their often being connected to species‐rich perennial reaches. The assemblages of these intermittent reaches were not simply a subset of the species in perennial streams, but rather were dominated by a suite of stoneflies, blackflies and midges with adaptations to intermittency (e.g. egg and/or larval diapause). On average, 86% of individuals in these samples were specialists or exclusive to intermittent streams. Predators were 7–14 times more abundant in perennial than in intermittent reaches. 4. Despite being separated by long distances (12–25 km) and having very different physical characteristics, the assemblages of perennial headwaters and rivers were more similar to one another than to intervening intermittent reaches, emphasising the prime importance of local hydrology in this system. 5. The duration and recurrence intervals of dry periods, and the relative importance of dispersal from perennial refuges, probably influence the magnitude of biological differences between neighbouring perennial and temporary streams. Although perennial headwaters supported the highest diversity of invertebrates, intermittent reaches supported a number of unique or locally rare species and as such contribute to regional species diversity and should be included in conservation planning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号