首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Determining the source areas of harvested individuals is important for effective conservation and management of migratory game birds. Banding has provided much information about source areas, but obtaining samples of marked individuals representative of all potential breeding areas is difficult for most species. To add to previous knowledge of harvest derivation based on banding data and to assist with regulatory decisions, we used stable hydrogen isotope (δ2H) techniques to estimate natal and molt source areas of Blue-winged Teal (Spatula discors) harvested in southern Canada in 2014 and 2017. We found that most birds harvested in southern Saskatchewan, southern Manitoba, northern Ontario, and southern Ontario likely originated in the prairie and boreal plains regions of Canada and the United States, which is the core production area for the species. Based on feather δ2H values, some birds harvested in Ontario may have also originated in Ontario. Our results differ from those of a long-term analysis of band recovery data that revealed that most Blue-winged Teal harvested in Ontario originated in the eastern part of the province and areas along the lower Great Lakes and southwestern Quebec. We found that nearly all birds harvested in Ontario in our study likely originated from areas north and west of the province. Together, banding and stable isotopes likely provide the best information available on source areas of harvested birds for regulatory decision making.  相似文献   

2.
3.
    
Assessing spatial variation in waterfowl harvest probabilities from banding data is challenging because reporting and recovery probabilities have distinct spatial patterns that covary temporally with harvesting regulations, hunter effort, and reporting methods. We analyzed direct band recovery data from American black ducks banded on the Canadian breeding grounds from 1970 through 2010. Data were registered to a 1‐degree grid and analyzed using hierarchical logistic regression models with spatially correlated errors to estimate the annual probabilities of band recovery and the proportion of individuals recovered in Canada. Probability of harvest was estimated from these values, in combination with independent estimates of reporting probabilities in Canada and the USA. Model covariates included estimates of hunting effort and factors for harvest regulation and band reporting methods. Both the band recovery processes and the proportion of individuals recovered in Canada had significant spatial structure. Recovery probabilities were highest in southern Ontario, along the Saint Lawrence River in Quebec, and in Nova Scotia. Black ducks breeding in Nova Scotia and southern Quebec were harvested predominantly in Canada. Recovery probabilities for juveniles were correlated with hunter effort, while the adult recoveries were weakly correlated with the implementation of stricter harvest regulations in the early 1980s. Mean harvest probability decreased in the northern portion of the survey area but remained stable or even increased in the south. Harvest probabilities for juveniles in 2010 exceeded 20% in southern Quebec and the Atlantic provinces. Our results demonstrate fine‐scale variation in harvest probabilities for black duck on the Canadian breeding ground. In particular, harvest probabilities should be closely monitored along the Saint Lawrence River system and in the Atlantic provinces to avoid overexploitation.  相似文献   

4.
5.
6.
    
Although metal legbands have been an important scientific tool, their use for estimation of harvest and survival relies on samples of dead birds harvested by hunters using shotguns. We hypothesized that the force of steel pellets discharged from a shotgun, within the range of conditions normally experienced by goose hunters, was sufficient to reduce probability of band retention. We conducted 8 experimental trials to estimate retention per round fired at aluminum bands normally applied to arctic-nesting geese in relation to effects of 1) target range (20 m vs. 40 m), 2) steel pellet size (4.57 mm [BB] vs. 3.81 mm [number 2]), 3) cartridge size (76.2 mm [3 in.] vs. 69.9 mm [2.75 in.]), and 4) number of rounds fired (up to 25). There was nearly complete band retention (0.999/round) at 40 m regardless of shot size or shell size used. Retention per round fired at 20 m declined to between 0.984 and 0.987 for number 2 shot and between 0.968 and 0.974 for BB shot. Our conclusions apply to unworn bands, so we recommend further simulations to assess how retention may change with age of bands as they erode or corrode on free-ranging geese. Bias in estimates associated with loss of older bands from shotgun discharge could be adjusted if bias is estimated as done in this article. © 2011 The Wildlife Society.  相似文献   

7.
8.
    
Estimates of cougar (Puma concolor) density are among the least available of any big game species in North America because of monetary and logistical challenges. Thus, wildlife managers identify cougar density estimates as a high priority need for population estimation, developing harvest guidelines, and evaluating management objectives. Cougar densities range from <1 to almost 7 cougars/100 km2; however, the magnitude of spatial and temporal variation associated with these estimates is difficult to assess because this range of densities could potentially be reported for any given population using different demographic, temporal, durational, and analytical approaches. We used long-term global positioning system (GPS) data from collared cougars across 5 diverse study areas in Washington, USA, as the basis for calculating multiple annual independent-aged (≥18 months) cougar densities, using consistent methods, and conducted a meta-analysis to assist with statewide harvest guidelines. To generate specific harvest guidelines for unobserved populations at the management unit scale, we employed a Bayesian decision-theoretic approach that minimizes statistical risk of failing to achieve a defined harvest rate. For the 16-year field effort, we calculated 24 annual densities for independent-aged cougars. Average annual densities ranged from 1.55 ± 0.44 (SD) cougars/100 km2 (n = 5 years) to 2.79 ± 0.35 cougars/100 km2 (n = 5 years) among the 5 study areas. Explicit delineation of the cougar population demonstrated that contribution to density can vary considerably by sex and age class. Application of a 12–16% harvest rate within the risk analysis framework yielded a potential annual harvest of 249 cougars over 91,000 km2 of cougar habitat in Washington. Given the importance of density for establishing harvest guidelines, and the degree of uncertainty in projecting derived densities to future years and unstudied management units, our approach may lessen the ambiguity of extrapolations and increase the longevity of research results. Our risk analysis can be used for a diverse array of species and management objectives and be incorporated into an adaptive management framework for minimizing management risk. Our recommendations can improve standardization in reporting and interpretation of cougar density comparisons and bring clarity to the sources of variability observed in cougar populations. © 2021 The Wildlife Society.  相似文献   

9.
10.
11.
In this paper we ask whether we should we re-examine the future of upland gamebird management and greater federal oversight and partnerships in the twenty-first century. Management for waterfowl in North America has been successful because of the 1918 Migratory Bird Treaty Act (MBTA) and the subsequent 1986 North American Waterfowl Management Plan (NAWMP). Although the MBTA included most migratory and non-migratory species, upland gamebirds, including the northern bobwhite (Colinus virginianus; bobwhite), were excluded and retained under state control. Although many waterfowl populations have been increasing, bobwhite populations have declined precipitously during much of the period. Excluding non-migratory gamebirds from the MBTA meant that the multistate coordinating efforts that made the MBTA successful for increasing the management of waterfowl have not been applied. The National Bobwhite Conservation Initiative (NBCI) has made a strong effort to unite states within the bobwhite range but does not have the federal anchoring and financial support that were given to states by the MBTA and NAWMP and currently integrate adaptive harvest, habitat management, and financial partnerships to acquire and manage wetlands that support waterfowl production. The NBCI Coordinated Implementation Program (CIP) is designed to serve the function of developing and monitoring habitat for bobwhites but is entirely voluntary and dependent entirely on state and non-governmental organization (NGO) funds, lacking federal grants and Federal Duck Stamp funds. To catch up with the successes of waterfowl, we discuss the implications of increasing coordination, partnerships, and funding mechanisms between the federal government, state governments, and NGOs to provide common landscape-level population monitoring and modeling, adaptive harvest regulations, habitat management goals, and a national upland gamebird stamp. © 2021 The Wildlife Society.  相似文献   

12.
13.
14.
Geographical distributions of waterfowl exhibit annual variation in response to spatiotemporal variation in weather conditions, habitat availability, and other factors. Continuing changes in climate and land use could lead to persistent shifts of waterfowl distributions, potentially causing a mismatch with habitat conservation planning, wetland restoration efforts, and harvest management decisions informed by historical distributions. We used band recoveries and harvest records (i.e., hunter-harvested wings) from the United States Fish and Wildlife Service Waterfowl Parts Collection Survey as indices of duck distribution in autumn and winter, and quantified intra-annual, interannual, and interspecific variation in their geographic distributions across 6 decades (1960–2019) for 15 duck species in the Central and Mississippi flyways in North America. Specifically, we tested for annual and decadal shifts in mean latitude and longitude of recoveries for each month (Oct–Jan) by species and taxonomic guild (i.e., dabbling, diving ducks). Overall, species varied in the extent, timing, and sometimes direction, of distributional change in recoveries. From 1960–2019, mean recovery locations for dabbling ducks shifted south 105–296 km in October and 27 km in November (wings only), whereas mean latitudes shifted north 144–234 km in December and 186–301 km in January. Mean recovery locations for diving ducks shifted north 162 km in October (wings only), 84–173 km in December, and 66–120 km in January, but shifted 99–512 km south in November. Shifts in longitude were less consistent between guilds and data types. Finally, distributional change rarely accelerated during recent decades, except for southward shifts of band recoveries of diving ducks in November and northward shifts of band and wing recoveries of dabbling ducks in January. Although anecdotal accounts of large-scale northward shifts in duck distributions are prolific in the land management and hunting communities, our data demonstrate more subtle shifts that vary considerably by species and month. Observed changes in recovery distributions could necessitate changes in timing of habitat management practices throughout the Central and Mississippi flyways and may result in fewer hunting and recreational opportunities for some species in southern states. Quantifying patterns of historical change is a necessary first step to understanding temporal and interspecific variation in waterfowl distributions, which will help with landscape-scale conservation and management efforts in the future and enable effective communication to core constituencies regarding ongoing changes and their implications for recreational engagement.  相似文献   

15.
We used horn measurements from natural and hunted mortalities of male thinhorn sheep Ovis dalli from Yukon Territory, Canada, to examine the relationship between rapid growth early in life and longevity. We found that rapid growth was associated with reduced longevity for sheep aged 5 years and older for both the hunted and natural mortality data sets. The negative relationship between growth rate and longevity in hunted sheep can at least partially be explained by morphologically biased hunting regulations. The same trend was evident from natural mortalities from populations that were not hunted or underwent very limited hunting, suggesting a naturally imposed mortality cost directly or indirectly associated with rapid growth. Age and growth rate were both positively associated with horn size at death for both data sets, however of the two growth rate appeared to be a better predictor. Large horn size can be achieved both by individuals that grow horns rapidly and by those that have greater longevity, and the trade-off between growth rate and longevity could limit horn size evolution in this species. The similarity in the relationship between growth rate and longevity for hunted and natural mortalities suggests that horn growth rate should not respond to artificial selection. Our study highlights the need for the existence and study of protected populations to properly assess the impacts of selective harvesting.  相似文献   

16.
17.
    
The salt marsh harvest mouse (Reithrodontomys raviventris) is an endangered species, endemic to the marshes of the San Francisco Bay, California, USA. This species is thought to feed primarily on pickleweed (Salicornia pacifica), although its diet is poorly understood, and a large proportion of remaining habitat for salt marsh harvest mice is managed for non-pickleweed vegetation to provide habitat for waterfowl. Using 2 sets of cafeteria trials, we tested food preferences of the salt marsh harvest mouse when offered a variety of plants and invertebrates from the Suisun Marsh, Solano County, California. In a set repeated menu, and unique seasonal menus, salt marsh harvest mice showed strong preferences for food types commonly grown for waterfowl, and also for non-native plants; in contrast, pickleweed was the most preferred during only some of the set and some of the seasonal trials. These results suggest that salt marsh harvest mice have a more flexible diet than previously thought, and will allow land managers in areas such as the Suisun Marsh to promote the growth of plants that provide foods that are preferred by both waterfowl and salt marsh harvest mice. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

18.
A strategy for minimizing waterfowl deaths on toxic waterbodies   总被引:1,自引:1,他引:0  
1. A deterrent was used in conjunction with engineering and management techniques to discourage nomadic waterfowl from landing and remaining on toxic waterbodies.
2. Four behavioural traits of nomadic waterfowl were exploited in the development of the deterrent: nocturnal movements, attraction to reflective surfaces, fear of diurnal predators, and naivety to local conditions and deterrents.
3. A rotating, intermittent beacon directed at a shallow angle across the water surface effectively discouraged most waterfowl. This beacon was floating and solar-powered and built to be acid resistant.
4. A series of deterrents, with gas-powered sonic guns and provision of clean alternative waterbodies nearby, significantly lessened the likelihood of waterfowl injury or mortality on toxic waterbodies.  相似文献   

19.
    
Wild turkeys (Meleagris gallopavo) are a prolific species and valuable game animal throughout the United States. Stochastic simulations are commonly used to inform harvest management, and we used simulation to test performance of fall harvest management that included 1-, 3-, and 5-year cycles of population assessment and updating of harvest targets, respectively. To assess robustness of our conclusions, we replicated analyses across 18 combinations of model parameters that included population productivity (3 levels), sex-specific vulnerability to fall harvest (3 levels), and magnitude of spring harvest (2 levels). Performance of multi-year cycles, measured using abundance of males and annual harvest, depended on the context of model parameters that interacted to determine responses of populations to harvest. One- and 3-year cycles had similar performance so long as female harvests were less than or equal to male harvests. However, when harvest of females was greater than males, or when 5-year regulation cycles were implemented, there was greater risk due to nonlinear population responses to increased harvest. For example, nonlinearity resulted in thresholds where declines to abundance and harvest could occur with small increases to harvest rates, and thus the sustainability of fall harvests was less robust for multi-year cycles with time-lagged assessment and decision making. Moreover, the harvest rate resulting in threshold responses depended on model parameters and often occurred within the range of harvest rates recommended by earlier modeling studies (7–15%). Our results imply that multi-year cycles can be a viable approach to harvest management. Monitoring that provides information on sex-specific harvest is recommended, however, to determine if nonlinear population responses should be anticipated. Ideally, information on population-specific vital rates would also be available to allow managers to avoid harvest rates near thresholds that are expected to result in population declines. © The Wildlife Society, 2019  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号