首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density‐dependent breeding performance due to habitat heterogeneity has been shown to regulate populations of territorial species, since the progressive occupation of low quality territories as breeding density increases may cause a decline in the mean per capita fecundity of a population while variation in fecundity increases. Although the preemptive use of sites may relegate low quality individuals to sites of progressively lower suitability, few studies on density dependence have tried to separate the effects of territory quality from individual quality, and none have simultaneously considered the effects of heterospecific competitors. Using two long‐term monitored populations, we assessed the relative contribution of habitat heterogeneity and bird quality (in terms of age) on the productivity of sympatric golden Aquila chrysaetos and Bonelli's eagles Hieraaetus fasciatus under different scenarios of intra‐ and inter‐specific competition. Productivity (number of offspring fledged) varied among territories and average annual productivity was negatively related to its variability in both species and populations, thus giving some support to the habitat heterogeneity hypothesis. However, the effect of habitat heterogeneity on productivity became non‐significant when parental age and local density estimators were included in multivariate analyses. Therefore, temporal changes in bird quality (age) combined with intra‐ and interspecific competition explained variability in territory productivity rather than habitat heterogeneity among territories per se. The recruitment of subadult breeders, a surrogate of mortality in eagles, strongly varied among territories. Habitat heterogeneity in productivity may thus arise not because sites differ in suitability for reproduction but because of differences in factors affecting survival. Territories associated with high mortality risks have a higher probability of being occupied by young birds, whose lower quality, interacting with the density competitors, leads to a reduction of productivity. Site‐dependent variability in adult survival and interspecific competition may be extensive, but so far largely overlooked, factors to be seriously considered for the site‐dependent population regulation framework.  相似文献   

2.
ABSTRACT We analyzed 53 years of banding and band recovery data along with estimates of harvest and population size to assess the role of harvest and density dependence in survival patterns and population dynamics of black brant (Branta bernicla nigricans) over the period 1950–2003. The black brant population has declined steadily since complete annual surveys began in 1960, so the role of harvest in the dynamics of this population is of considerable interest. We used Brownie models implemented in Program MARK to analyze banding data. In some models, we incorporated estimated sport harvest to test hypotheses about the role of harvest in survival. We also examined the hypothesis of density-dependent regulation of mortality by incorporating estimates of population size as a covariate into models of survival. For a shorter period (1985–2003), we also assessed hypotheses about the role of subsistence harvest and predation as sources of mortality. The best supported model of variation in survival and band recovery allowed survival rates to vary among 2 age classes (juv, second-yr plus ad brant) and the 2 sexes. We constrained survival probabilities to be constant within decades but allowed them to vary among decades. We also constrained band recovery rates to be constant within decades and to vary in parallel among age and sex classes. We were limited to decade-specific estimates of survival and band recovery rates because some years before 1984 lacked any banding, and banding in some other years was sparse. A competitive model constrained survival estimates to be the same for males and females. No model containing harvest or population size was competitive with models lacking these covariates (relative quasi-Akaike's Information Criterion adjusted for small sample size [βQAICc] > 13). In the best supported model, band recovery rates declined from 0.038 ± 0.0028 (F) and 0.040 ± 0.0031 (M) to 0.007 ± 0.0007 (F) and 0.007 ± 0.0007 (M) between the 1950s and 2000s, a clear indication that harvest rates declined over this period. Survival rates increased from 0.70 ± 0.02 and 0.71 ± 0.02 for adult males and females, respectively, in the 1950s to 0.88 ± 0.009 and 0.88 ± 0.01 for males and females, respectively, in the 1990s. Survival rates in the 1990s were among the highest estimated for brant and did not increase in the 2000s with additional reductions in sport harvest. For the shorter data set from 1985 to 2003, models containing covariates for either sport or subsistence harvest were less competitive than models lacking these terms (βQAICc > 3). For the best model containing subsistence harvest, the estimate of β linking subsistence harvest to survival, although imprecisely estimated, was near zero (β = −0.04 ± 0.30), consistent with the hypothesis that subsistence harvest had little impact on survival during this period. We conclude that while harvest likely influenced survival and population dynamics in earlier decades, it is most likely that continued population decline at least since 1990 is a result of low recruitment.  相似文献   

3.
For long‐lived animals, maternal age and breeding experience can vary widely and affect offspring survival and recruitment probabilities. In addition, these vital rates may be influenced by annual variation in environmental conditions. We evaluated various hypotheses regarding how offspring survival and recruitment probabilities vary as functions of maternal characteristics and oceanographic conditions, using 25 years of data from a study of individually‐marked Weddell seals in Erebus Bay, Antarctica. We predicted that survival and recruitment would be positively related to maternal age and experience up to some threshold value and considered three hypothesized shapes for the relationship beyond the threshold age (steadily increasing, pseudo‐threshold, or decreasing). We predicted an inverse relationship between maternal age at first reproduction and offspring survival and recruitment probabilities. We predicted that sea‐ice extent, which positively influences primary productivity, would be positively related to annual recruitment probabilities. Results revealed contrasting influences of maternal age on probabilities of survival and recruitment of young. Survival rate was best modeled by a pseudo‐threshold relationship with maternal age, e.g. in 1999, survival rate was estimated as 0.61, 0.69 and 0.72, respectively, for seals born to 6‐, 14‐ and 22‐yr‐old mothers. In contrast, estimated recruitment probability was highest for seals born to young mothers, e.g. recruitment probability for a 7‐yr‐old who had not yet had a pup was estimated as 0.51 vs 0.30, respectively, if she was born to a 6‐ versus a 14‐yr‐old mother. The combined results for offspring survival and recruitment suggest countervailing selection where genotypes favored for reproductive success are generally selected against as juveniles, resulting in high recruitment probabilities for individuals that had low juvenile survival rates. Finally, we found support for our prediction that oceanographic conditions affected annual recruitment rates, but not survival rates. Specifically, annual recruitment probability was positively related to the sea‐ice extent in September of the previous year.  相似文献   

4.
Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment.  相似文献   

5.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

6.
Atlantic brant (Branta bernicla hrota) are important game birds in the Atlantic Flyway and several long-term monitoring data sets could assist with harvest management, including a count-based survey and demographic data. Considering their relative strengths and weaknesses, integrated analysis to these data would likely improve harvest management, but tools for integration have not yet been developed. Managers currently use an aerial count survey on the wintering grounds, the mid-winter survey, to set harvest regulations. We developed an integrated population model (IPM) for Atlantic brant that uses multiple data sources to simultaneously estimate population abundance, survival, and productivity. The IPM abundance estimates for data from 1975–2018 were less variable than annual mid-winter survey counts or Lincoln estimates, presumably reflecting better accounting for observer error and incorporation of demographic estimates by the IPM. Posterior estimates of adult survival were high (0.77–0.87), and harvest rates of adults and juveniles were positively correlated with more liberal hunting regulations (i.e., hunting days and the daily bag limit). Productivity was variable, with the percent of juveniles in the winter population ranging from 1% to >40%. We found no evidence for environmental relationships with productivity. Using IPM-predicted population abundances rather than mid-winter survey counts alone would have meant fewer annual changes to hunting regulations since 2004. Use of the IPM could improve harvest management for Atlantic brant by providing the ability to predict abundance before annual hunting regulations are set, and by providing more stable hunting regulations, with fewer annual changes. © 2021 The Wildlife Society.  相似文献   

7.
Abstract. 1. Optimal clutch size theory predicts that individuals will oviposit the number of eggs that increases their fitness. In Anastrepha ludens Loew (Diptera: Tephritidae), females oviposit larger clutches in unripe (firm) fruits than in ripe (soft) fruits. The following hypotheses were tested: (1) Using fruit firmness as an indicator of fruit quality, A. ludens females vary the number of eggs per clutch every time they reach an oviposition decision. (2) Maximising offspring survival with respect to either unripe or ripe fruit requires placing large clutches in firm fruit and smaller clutches in soft fruit. 2. Agar spheres were used as artificial hosts. Three agar concentrations resulted in three degrees of firmness. Mango fruits Mangifera indica L. served as natural hosts. Ripe and unripe fruits were used to test soft and firm host conditions respectively. Females laid significantly larger clutches in the firmer artificial hosts than in the softer hosts. They also laid significantly more eggs in artificial hosts without sugar than in hosts with sugar. Firm (unripe) mangoes also received significantly larger clutches than soft (ripe) mangoes. 3. When an individual female was first presented with a firm artificial host, it laid a large clutch. If subsequently offered a soft host, the female laid a significantly smaller clutch. Finally, if again offered a firm host, clutch size was increased significantly. 4. Possible trade‐offs in offspring fitness were explored in ripe and unripe mangoes by measuring offspring egg‐to‐adult survival, pupal weight, mean adult longevity, and fecundity. Despite the fact that larval survival was greater in soft fruit than in firm fruit, parameters such as pupal weight, mean longevity, and fecundity of adults stemming from both fruit types did not differ significantly. 5. A probable trade‐off between high offspring mortality caused by host unsuitability and low offspring and adult mortality caused by parasitism and predation is discussed as the reason for the exploitation of sub‐optimal hosts.  相似文献   

8.
Recruitment age plays a key role in life-history evolution. Because individuals allocate limited resources among competing life-history functions, theory predicts trade-offs between current reproduction and future growth, survival and/or reproduction. Reproductive costs tend to vary with recruitment age, but may also be overridden by fixed individual differences leading to persistent demographic heterogeneity and positive covariation among demographic traits at the population level. We tested for evidence of intra- and inter-generational trade-offs and individual heterogeneity relating to age at first reproduction using three decades of detailed individual life-history data of 6,439 capital breeding female southern elephant seals. Contrary to the predictions from trade-off hypotheses, we found that recruitment at an early age was associated with higher population level survival and subsequent breeding probabilities. Nonetheless, a survival cost of first reproduction was evident at the population level, as first-time breeders always had lower survival probabilities than prebreeders and experienced breeders of the same age. However, models accounting for hidden persistent demographic heterogeneity revealed that the trade-off between first reproduction and survival was only expressed in “low quality” individuals, comprising 35% of the population. The short-term somatic costs associated with breeding at an early age had no effect on the ability of females to allocate resources to offspring in the next breeding season. Our results provide strong evidence for individual heterogeneity in the life-history trajectories of female elephant seals. By explicitly modeling hidden persistent demographic heterogeneity we show that individual heterogeneity governs the expression of trade-offs with first reproduction in elephant seals.  相似文献   

9.
1.?We assessed the relative influence of variability in recruitment age, dynamic reproductive investment (time-specific reproductive states) and frailty (unobserved differences in survival abilities across individuals) on survival in the black-legged kittiwake. Furthermore, we examined whether observed variability in survival trajectories was best explained by immediate reproductive investment, cumulative investment, or both. 2.?Individuals that delayed recruitment (≥ age 7) suffered a higher mortality risk than early recruits (age 3), especially later in life, suggesting that recruitment age may be an indicator of individual quality. Although recruitment age helped explain variation in survival, time-varying reproductive investment had a more substantial influence. 3.?The dichotomy of attempting to breed or not explained variability in survival across life better than other parameterizations of reproductive states such as clutch size, brood size or breeding success. In the kittiwake, the sinequanon condition to initiate reproduction is to hold a nest site, which is considered a very competitive activity. This might explain why attempting to breed is the key level of investment that affects survival, independent of the outcome (failure or success). 4.?Interestingly, the more individuals cumulate reproductive attempts over life, the lower their mortality risk, indicating that breeding experience may be a good indicator of parental quality as well. In contrast, attempting to breed at time t increased the risk of mortality between t and t + 1. We thus detected an immediate trade-off between attempting to breed and survival in this population; however, the earlier individuals recruited, and the more breeding experience they accumulated, the smaller the cost. 5.?Lastly, unobserved heterogeneity across individuals improved model fit more (1·3 times) than fixed and dynamic sources of observed heterogeneity in reproductive investment, demonstrating that it is critical to account for both sources of individual heterogeneity when studying survival trajectories. Only after simultaneously accounting for both sources of heterogeneity were we able to detect the 'cost' of immediate reproductive investment on survival and the 'benefit' of cumulative breeding attempts (experience), a proxy to individual quality.  相似文献   

10.
Both intrinsic and extrinsic factors recorded at individual nests can predict offspring fitness and survival but few studies have examined these effects in the tropics. We recorded nestling survival, post‐fledging survival and age at first return of Roseate Terns breeding at Aride Island, Seychelles, over a 12‐year period (1998–2009). Nest data recorded at the egg, nestling and fledging stages were collected during six breeding seasons (1998, 2001–2005) and a capture‐mark‐recapture dataset of six cohorts of fledglings was obtained from 2001–2009. Logistic regression models were used to assess the predictive effect of reproductive variables on fledging success, while multistate capture‐mark‐recapture models were used to estimate post‐fledging survival and return–recruitment probabilities to the natal site. Nestling survival probability increased with earliness of laying and was negatively affected by tick infestation during the growth period (0–23 days). Fledging probability was also positively related to chick body condition, whereas other pre‐fledging reproductive parameters such as clutch size and egg size were not influential. A multistate modelling of age‐specific survival and return–recruitment (transition) rates found that first‐year survival differed between cohorts and was also negatively affected by tick infestation. Annual survival stabilized from age 2 onwards at 0.83 ± 0.02. Transition rates were positively related to body condition at fledging, with heavier individuals returning for the first time to the natal colony at a younger age compared with lighter individuals. These results highlight the importance of local conditions encountered by tropical seabirds during the breeding season in shaping demographic parameters.  相似文献   

11.
Territorial aggression can influence males’ ability to obtain high‐quality resources and access to mates; however, in many species, the reproductive consequences of variation in aggression are unknown. In this study, we investigated how individual variation in aggressive behavior relates to reproductive success in socially monogamous, genetically polygynous song sparrows (Melospiza melodia). Prior research in this species shows that male song sparrows differ in their willingness to engage in agonistic interactions with territorial intruders and that individual variation in aggression appears to have functional significance. Aggressive males have been shown to obtain territories where females produce larger clutch sizes, suggesting that individuals who display high levels of territorial aggression are defending high‐quality territories or females. Further, aggressive males are considered a greater threat to territory‐holding males than less aggressive males. In this study, we ask whether individual differences in aggression are linked to differences in extra‐pair reproductive success, annual reproductive success, and offspring quality. We did not uncover a relationship between aggression and annual reproductive success or patterns of extra‐pair paternity. However, we found that the nestlings of aggressive males grew at a faster rate than the nestlings of less aggressive males. Future studies should attempt to identify mechanisms to explain the relationship between offspring growth rate and male aggression and investigate whether faster offspring growth rates translate to greater survival and recruitment of offspring.  相似文献   

12.
Early developmental conditions contribute to individual heterogeneity of both phenotypic traits and fitness components, ultimately affecting population dynamics. Although the demographic consequences of ontogenic growth are best quantified using an integrated measure of fitness, most analyses to date have instead studied individual fitness components in isolation. Here, we estimated phenotypic selection on weaning mass in female southern elephant seals Mirounga leonina by analyzing individual‐based data collected between 1986 and 2016 with capture–recapture and matrix projection models. In support of a hypothesis predicting a gradual decrease of weaning mass effects with time since weaning (the replacement hypothesis), we found that the estimated effects of weaning mass on future survival and recruitment probability was of intermediate duration (rather than transient or permanent). Heavier female offspring had improved odds of survival in early life and a higher probability to recruit at an early age. The positive link between weaning mass and recruitment age is noteworthy, considering that pre‐recruitment mortality already imposed a strong selective filter on the population, leaving only the most ‘robust’ individuals to reproduce. The selection gradient on asymptotic population growth rate, a measure of mean absolute fitness, was weaker than selection on first‐year survival and recruitment probabilities. Weaker selection on mean fitness occurs because weaning mass has little impact on adult survival, the fitness component to which the population growth of long‐lived species is most sensitive. These results highlight the need to interpret individual variation in phenotypic traits in a context that considers the demographic pathways between the trait and an inclusive proxy of individual fitness. Although variation in weaning mass do not translate to permanent survival differences among individuals in adulthood, it explains heterogeneity and positive covariation between survival and breeding in early life, which contribute to between‐individual variation in fitness.  相似文献   

13.
The balance between clonal propagation and sexual reproduction varies among species. Although theory predicts an impact of clonal growth on both‐ within‐ and between population genetic structure, most empirical evidence available to date does not reveal sharp differences between sexually reproducing and clonal species. This has been attributed mainly to the fact that even low levels of sexual recruitment can maintain high levels of genetic diversity. Here we study the effects of prolonged clonal growth and very low rates of sexual recruitment on the genetic structure of the perennial Maianthemum bifolium, an outcrossing understorey species of temperate forests. Average genotypic diversity (0.37) of the populations, as revealed by AFLP, was above the average values reported for species of similar characteristics, but some populations were extremely poor in genotypes. Fruiting success was positively correlated with genotypic diversity, probably as a result of shortage in mating types and compatible pollen in populations poor in genotypes. This was confirmed by a pollination experiment. Fruiting success increased by a factor three when individuals were hand‐pollinated with pollen from a nearby population compared to hand‐pollinations with pollen from the own population. Furthermore, the fruiting success after natural pollination (control individuals) was positively related to number of nearby populations which could act as pollen sources. Given the limited colonization capacity of the species (no seed flow), and the long time since fragmentation of the forest fragments studied, between‐population genetic differentiation was relatively low (Φst=0.14). Lack of genetic drift due to long generation times and very limited sexual recruitment is probably responsible for this. Our results show that prolonged clonal growth and lack of sexual recruitment may affect within‐ and between‐ population genetic structure and the capability for sexual reproduction.  相似文献   

14.
Recent declines in black brant (Branta bernicla nigricans) are likely the result of low recruitment. In geese, recruitment is strongly affected by habitat conditions experienced by broods because gosling growth rates are indicative of forage conditions during brood rearing and strongly influence future survival and productivity. In 2006–2008, we studied gosling growth at 3 of the 4 major colonies on the Yukon-Kuskokwim Delta, Alaska. Estimates of age-adjusted gosling mass at the 2 southern colonies (approx. 30% of the world population of breeding black brant) was low (gosling mass at 30.5 days ranged 346.7 ± 42.5 g to 627.1 ± 15.9 g) in comparison to a third colony (gosling mass at 30.5 days ranged 640.0 ± 8.3 g to 821.6 ± 13.6 g) and to most previous estimates of age-adjusted mass of brant goslings. Thus, our results are consistent with the hypothesis that poor gosling growth is negatively influencing the brant population. There are 2 non-mutually exclusive explanations for the apparent growth rates we observed. First, the population decline may have been caused by density-independent factors and habitat capacity has declined along with the population as a consequence of the unique foraging feedback between brant and their grazing habitats. Alternatively, a reduction in habitat capacity, as a result of changes to the grazing system, may have negatively influenced gosling growth, which is contributing to the overall long-term population decline. We found support for both explanations. For colonies over habitat capacity we recommend management to enhance foraging habitat, whereas for colonies below habitat capacity we recommend management to increase nesting productivity. © 2010 The Wildlife Society.  相似文献   

15.
Offspring size affects survival and subsequent reproduction in many organisms. However, studies of offspring size in large mammals are often limited to effects on juveniles because of the difficulty of following individuals to maturity. We used data from a long‐term study of individually marked gray seals (Halichoerus grypus; Fabricius, 1791) to test the hypothesis that larger offspring have higher survival to recruitment and are larger and more successful primiparous mothers than smaller offspring. Between 1998 and 2002, 1182 newly weaned female pups were branded with unique permanent marks on Sable Island, Canada. Each year through 2012, all branded females returning to the breeding colony were identified in weekly censuses and a subset were captured and measured. Females that survived were significantly longer offspring than those not sighted, indicating size‐selective mortality between weaning and recruitment. The probability of female survival to recruitment varied among cohorts and increased nonlinearly with body mass at weaning. Beyond 51.5 kg (mean population weaning mass) weaning mass did not influence the probability of survival. The probability of female survival to recruitment increased monotonically with body length at weaning. Body length at primiparity was positively related to her body length and mass at weaning. Three‐day postpartum mass (proxy for birth mass) of firstborn pups was also positively related to body length of females when they were weaned. However, females that were longer or heavier when they were weaned did not wean heavier firstborn offspring.  相似文献   

16.
Differing reproductive effort, individual qualities and local environmental conditions can lead to uneven mortality risk among individuals within populations and may result in survival differences according to age and sex. Identification of factors contributing to unequal operational sex ratios has been important for understanding population dynamics and conservation management. In this study, sex‐ and age‐specific mortality was estimated in three wild Grey Partridge populations from analysis of year‐round radiotracking data from 168 individuals. Survival days were counted in three periods defined individually for each bird: the pairing period (covey break‐up to laying of the first egg); the nesting period (between clutch initiation date and failure of the last nesting attempt, or the date when chicks were 14 days old); and the covey period (the end of the nesting period or joining a group until covey break‐up). Predation was the main cause of mortality. A significant effect of age on survival was found during the pairing period, when older individuals paired off faster and survived better. The highest mortality risk overall was found during the nesting period. Furthermore, significantly higher mortality of females was recorded during the nesting period, suggesting that greater investments in reproduction, behaviour at the nest or the quality of nesting habitats can decrease survival of females and cause a male‐skewed sex ratio. No significant effect of age or sex was found during the covey period, or for the year as a whole, but there was a significant difference in annual mortality rates between the three study populations. Our results confirm age‐ and sex‐specific variation of adult mortality in a ground‐nesting bird with biparental care during the annual cycle, documenting differing sensitivities of various population cohorts to predation.  相似文献   

17.
Torres R  Drummond H  Velando A 《PloS one》2011,6(11):e27245
Recent studies of wild populations provide compelling evidence that survival and reproduction decrease with age because of senescence, a decline in functional capacities at old ages. However, in the wild, little is known about effects of parental senescence on offspring quality. We used data from a 21-year study to examine the role of parental age on offspring probability of recruitment in a long-lived bird, the blue-footed booby (Sula nebouxii). Offspring probability of recruiting into the breeding population varied over the life of parents and effects age were similar in mothers and fathers. Offspring recruitment was high when parents were roughly 6-12 years old and low before and after then. Effects of parental age on offspring recruitment varied with lifespan (parental age at last reproduction) and previous breeding experience. Offspring recruitment from young and old parents with long reproductive lifespans was greater than that of offspring from parents with short lifespans at young and old ages. For parents with little previous breeding experience recruitment of offspring decreased with their hatch date, but experienced parents were no similarly affected. We found evidence of terminal effects on offspring recruitment in young parents but not in older parents, suggesting that senescence is more likely a gradual process of deterioration than a process of terminal illness. Failure to recruit probably reflects mortality during the first years after independence but also during the fledgling transition to full independence. Our results show effects of parental age and quality on offspring viability in a long-lived wild vertebrate and support the idea that wild populations are composed of individuals of different quality, and that this individual heterogeneity can influence the dynamics of age-structured populations.  相似文献   

18.
Maternal stress can have long‐term adverse consequences on immunocompetence and disease risk of offspring, and winter survival is a crucial demographic parameter in the life‐history of an individual that can substantially affect northern rodent population dynamics. An understanding of the effects of maternal stress on winter survival of offspring may help identify mechanisms driving population fluctuations of northern small mammals. Thus, we assessed the effects of maternal stress, resulting from high population densities, on winter survival of first generation (F1) and second generation (F2) in root voles Microtus oeconomus. Replicate high‐ and low‐density enclosed parental populations were established, from which we obtained F1 generation that were used to establish new enclosed, equal‐density populations. The adults of the high‐density parental populations had higher corticosterone levels, an indication of physiological stress, than did those of the low‐density parental populations. Over‐winter survival of the F1 generation voles from the low‐density parental populations was greater than that of those from the high‐density parental populations. Over‐winter survival of F2 generation voles did not differ between the two treatments. Our results suggest that maternal stress affected over‐winter survival of first generations but not second generations. Reduced immunocompetence, resulting from high population density stresses, transferred to offspring may be a factor in annual (winter) population declines. Because the effect is transitory, i.e. immunocompetence of F2 voles is not affected, reduced immunocompetence resulting from high density stresses would not contribute to lengthy periods of low population densities that are characteristic of multi‐annual population fluctuations.  相似文献   

19.
Proximate cues for animal dispersal are complex and varied. Multiple cues may provide information about different aspects of habitat quality, and these aspects may interact with each other, as well as with population density in different ways. We examined how individuals incorporate multiple cues in their decisions to emigrate and immigrate in the colonial orb‐weaving spider, Cyrtophora citricola. We manipulated maternal feeding as a cue for prey abundance and measured the size of the maternal web, which provides a limited space for philopatric offspring and a second potential dispersal cue. In addition, we recorded all immigration events to determine dispersal distances and the cues juveniles may use in settlement. Dispersal increased when mothers were poorly fed, web sizes were small and clutch sizes were large. In addition to these overall effects, maternal feeding also interacted with web size, indicating that offspring from well‐fed mothers were more tolerant of high sibling densities. We also detected a threshold for the effect of clutch size on dispersal for the first egg sac: below 20 offspring, there was no effect of clutch size, but dispersal increased with clutch size for larger clutches. Dispersal distances were often short, and immigrants preferred sheltered trees and those occupied by adult females. Dispersal not only depended on multiple cues, but these cues interacted, and the importance of web size suggested that saturation of the natal web might force dispersal, at least for spiders with poorly‐fed mothers. How one aspect of habitat quality influences dispersal can therefore depend on the state of other aspects of habitat quality. In particular, some natal resources, such as a nest or territory, may become saturated and limit group size, but this limit will also depend on other factors, such as prey availability.  相似文献   

20.
In Trinidad, guppies (Poecilia reticulata) in high‐predation localities show more cohesive shoaling behaviour than those living with less dangerous predators in low‐predation sites. We evaluated the relative contributions of population origin (i.e. genetic and/or maternal effects) and social environment on the expression of shoaling by assessing the behaviour of juveniles reared in a range of social conditions. Focal individuals, offspring of guppies from populations from high‐ or low‐predation localities, were reared in a multifactorial experiment; we created four different social conditions by manipulating the source and demography of the conspecific residents with whom focal individuals interacted. We found that high‐predation fish displayed a stronger propensity to shoal than low‐predation ones. Our results also suggest a role for interactions between the source of the focal individuals, the demography of the group in which they were reared and the origin of the guppies with whom they were reared. Depending on their origin (high‐ vs. low‐ predation) and rearing density, our focal fish were more likely to shoal if they were reared with high‐predation residents. Learning from high‐predation residents, aggressive interactions with low‐predation residents and/or phenotype matching could have played a role in driving this effect of social environment. This effect of the phenotype of conspecifics on shoaling development would enhance heritable differences in shoaling propensity such that both could contribute to the well‐documented difference in shoaling behaviour of high‐ and low‐predation guppies in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号