首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

2.
Parasite‐mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease‐related traits. However, nonadaptive processes like migration and extinction‐(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life‐history and disease‐related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite‐mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life‐history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QSTFST‐like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction‐(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.  相似文献   

3.
Host‐parasite interaction studies across hybrid zones often focus on host genetic variation, treating parasites as homogeneous. ‘Intimately’ associated hosts and parasites might be expected to show similar patterns of genetic structure. In the literature, factors such as no intermediate host and no free‐living stage have been proposed as ‘intimacy’ factors likely constraining parasites to closely follow the evolutionary history of their hosts. To test whether the whipworm, Trichuris muris, is intimately associated with its house mouse host, we studied its population genetics across the European house mouse hybrid zone (HMHZ) which has a strong central barrier to gene flow between mouse taxa. T. muris has a direct life cycle and nonmobile free stage: if these traits constrain the parasite to an intimate association with its host we expect a geographic break in the parasite genetic structure across the HMHZ. We genotyped 205 worms from 56 localities across the HMHZ and additionally T. muris collected from sympatric woodmice (Apodemus spp.) and allopatric murine species, using mt‐COX1, ITS1‐5.8S‐ITS2 rDNA and 10 microsatellites. We show four haplogroups of mt‐COX1 and three clear ITS1‐5.8S‐ITS2 clades in the HMHZ suggesting a complex demographic/phylogeographic history. Microsatellites show strong structure between groups of localities. However, no marker type shows a break across the HMHZ. Whipworms from Apodemus in the HMHZ cluster, and share mitochondrial haplotypes, with those from house mice. We conclude Trichuris should not be regarded as an ‘intimate’ parasite of the house mouse: while its life history might suggest intimacy, passage through alternate hosts is sufficiently common to erase signal of genetic structure associated with any particular host taxon.  相似文献   

4.
Parasites are known to profoundly affect resource allocation in their host. In order to investigate the effects of Cryphonectria Hypovirus 1 (CHV1) on the life‐history traits of its fungal host Cryphonectria parasitica, an infection matrix was completed with the cross‐infection of six fungal isolates by six different viruses. Mycelial growth, asexual sporulation, and spore size were measured in the 36 combinations, for which horizontal and vertical transmission of the viruses was also assessed. As expected by life‐history theory, a significant negative correlation was found between host somatic growth and asexual reproduction in virus‐free isolates. Interestingly this trade‐off was found to be positive in infected isolates, illustrating the profound changes in host resource allocation induced by CHV1 infection. A significant and positive relationship was also found in infected isolates between vertical transmission and somatic growth. This last relationship suggests that in this system, high levels of virulence could be detrimental to the vertical transmission of the parasite. Those results underscore the interest of studying host–parasite interaction within the life‐history theory framework, which might permit a more accurate understanding of the nature of the modifications triggered by parasite infection on host biology.  相似文献   

5.
Understanding traits influencing the distribution of genetic diversity has major ecological and evolutionary implications for host–parasite interactions. The genetic structure of parasites is expected to conform to that of their hosts, because host dispersal is generally assumed to drive parasite dispersal. Here, we used a meta‐analysis to test this paradigm and determine whether traits related to host dispersal correctly predict the spatial co‐distribution of host and parasite genetic variation. We compiled data from empirical work on local adaptation and host–parasite population genetic structure from a wide range of taxonomic groups. We found that genetic differentiation was significantly lower in parasites than in hosts, suggesting that dispersal may often be higher for parasites. A significant correlation in the pairwise genetic differentiation of hosts and parasites was evident, but surprisingly weak. These results were largely explained by parasite reproductive mode, the proportion of free‐living stages in the parasite life cycle and the geographical extent of the study; variables related to host dispersal were poor predictors of genetic patterns. Our results do not dispel the paradigm that parasite population genetic structure depends on host dispersal. Rather, we highlight that alternative factors are also important in driving the co‐distribution of host and parasite genetic variation.  相似文献   

6.
We estimated broad‐sense heritabilities (H2) of 13 female and seven male life‐history traits of the Glanville fritillary butterfly (Melitaea cinxia) under semi‐natural conditions in a large outdoor population cage. The analysis was based on full‐sib families collected as young larvae in the field and reared under common garden conditions. We found significant genetic variance in female lifespan, fecundity, number of matings and host‐plant preference as well as in male body mass and mobility. Apart from host‐plant preference, female traits that were more strongly correlated with lifetime reproductive success (LRS; measured as total number of eggs laid) had higher H2. LRS itself exhibited significant heritability. Host‐plant preference had very high H2, consistent with a previously reported genetically determined geographical cline in host‐plant preference in the study area. Lifespan and egg hatching rate were significantly associated with a SNP in the coding region of the Pgi gene, for which there is previous evidence for balancing selection. Selection on Pgi, which furthermore shows spatial and temporal variation, may maintain genetic variance in fitness‐related life‐history traits. In contrast, we found no strong evidence for life‐history trade‐offs.  相似文献   

7.
Pomphorhynchus laevis, a fish acanthocephalan parasite, manipulates the behaviour of its gammarid intermediate host to increase its trophic transmission to the definitive host. However, the intensity of behavioural manipulation is variable between individual gammarids and between parasite populations. To elucidate causes of this variability, we compared the level of phototaxis alteration induced by different parasite sibships from one population, using experimental infections of Gammarus pulex by P. laevis. We used a naive gammarid population, and we carried out our experiments in two steps, during spring and winter. Moreover, we also investigated co‐variation between phototaxis (at different stages of infection, ‘young’ and ‘old cystacanth stage’) and two other fitness‐related traits, infectivity and development time. Three main parameters could explain the parasite intra‐population variation in behavioural manipulation. The genetic variation, suggested by the differences between parasite families, was lower than the variation owing to an (unidentified) environmental factor. Moreover, a correlation was found between development rate and the intensity of behavioural change, the fastest growing parasites being unable to induce rapid phototaxis reversal. This suggests that parasites cannot optimize at the same time these two important parameters of their fitness, and this could explain a part of the variation observed in the wild.  相似文献   

8.
Parasites often affect the abundance and life‐history traits of their hosts. We studied the impact of a social parasite – a slavemaking ant – on host ant communities using two complementary field manipulations. In the first experiment, we analysed the effect of social parasite presence on host populations in one habitat. In a second experiment, conducted in two habitats, we used a cross‐fostering design, analysing the effect of sympatric and allopatric social parasites. In the first experiment, host colonies benefited to some extent from residing in parasite‐free areas, showing increased total production. Yet, in the second experiment, host colonies in plots containing social parasites were more productive, and this effect was most evident in response to allopatric social parasites. We propose several explanations for these inconsistent results, which are related to environmental variability. The discrepancies between the two habitats can be explained well by ecological variation as a result of differences in altitudes and climate. For example, ant colonies in the colder habitat were larger and, for one host species, colonies were more often polygynous. In addition, our long‐term documentation – a total of four measurements of community structure in 6 years – showed temporal variation in abundance and life‐history traits of ant colonies, unrelated to the manipulations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 559–570.  相似文献   

9.
Among parasitic platyhelminths with complex life cycles, it has been well documented that transmission opportunities are the main forces shaping the diversity of life‐history traits and parasite developmental strategies. While deviations in the development pathway usually involve shortening of life cycles, their extension may also occur following perception of remaining time by parasites. Polystoma gallieni, the monogenean parasite of Hyla meridionalis, is able to trigger two alternative developmental strategies depending on the physiological stage of the tadpoles upon which larvae attach. The distribution and reproductive outputs of both resulting phenotypes were surveyed to address questions about the dynamics of transmission in natural environments. Because modifications in the completion of life cycles can have drawbacks which may perturb the dynamic equilibrium of the resulting host–parasite systems, experimental infestations were also performed to assess parasite–parasite interactions. Our results suggest that the bladder adult phenotype, which involves transmission between frogs and tadpoles, is supplied secondarily by the branchial phenotype which involves transmission between tadpoles and metamorphs. They also support the occurrence of finely tuned trade‐offs between hosts and parasites and highlight positive trends behind the extension of direct life cycles, in which host‐derived signals account for the remaining time to achieve parasitic transmission.  相似文献   

10.
Evolution and population genetic structure of marine species across the Caribbean Sea are shaped by two complex factors: the geological history and the present pattern of marine currents. Characterizing and comparing the genetic structures of codistributed species, such as host–parasite associations, allow discriminating the relative importance of environmental factors and life history traits that influenced gene flow and demographic events. Using microsatellite and Cytochrome Oxidase I markers, we investigated if a host–parasite pair (the heart urchin Meoma ventricosa and its parasitic pea crab Dissodactylus primitivus) exhibits comparable population genetic structures in the Caribbean Sea and how the observed patterns match connectivity regions from predictive models and other taxa. Highly contrasting patterns were found: the host showed genetic homogeneity across the whole studied area, whereas the parasite displayed significant differentiation at regional and local scales. The genetic diversity of the parasitic crabs (both in microsatellites and COI) was distributed in two main groups, Panama–Jamaica–St Croix on the one hand, and the South‐Eastern Caribbean on the other. At a smaller geographical scale, Panamanian and Jamaican parasite populations were genetically more similar, while more genetic differentiation was found within the Lesser Antilles. Both species showed a signature of population expansion during the Quaternary. Some results match predictive models or data from previous studies (e.g., the Western‐Eastern dichotomy in the parasite) while others do not (e.g., genetic differentiation within the Lesser Antilles). The sharp dissimilarity of genetic structure of these codistributed species outlines the importance of population expansion events and/or contrasted patterns of gene flow. This might be linked to differences in several life history traits such as fecundity (higher for the host), swimming capacity of larval stages (higher for the parasite), and habitat availability (higher for the host).  相似文献   

11.
The resources available to an individual in any given environment are finite, and variation in life history traits reflect differential allocation of these resources to competing life functions. Nutritional quality of food is of particular importance in these life history decisions. In this study, we tested trade‐offs among growth, immunity and survival in 3 groups of greater wax moth (Galleria mellonella) larvae fed on diets of high and average nutritional quality. We found rapid growth and weak immunity (as measured by encapsulation response) in the larvae of the high‐energy food group. It took longer to develop on food of average nutritional quality. However, encapsulation response was stronger in this group. The larvae grew longer in the low‐energy food group, and had the strongest encapsulation response. We observed the highest survival rates in larvae of the low‐energy food group, while the highest mortality rates were observed in the high‐energy food group. A significant negative correlation between body mass and the strength of encapsulation response was found only in the high‐energy food group revealing significant competition between growth and immunity only at the highest rates of growth. The results of this study help to establish relationships between types of food, its nutritional value and life history traits of G. mellonella larvae.  相似文献   

12.
13.
Hosts can utilize different types of defense against the effects of parasitism, including avoidance, resistance, and tolerance. Typically, there is tremendous heterogeneity among hosts in these defense mechanisms that may be rooted in the costs associated with defense and lead to trade‐offs with other life‐history traits. Trade‐offs may also exist between the defense mechanisms, but the relationships between avoidance, resistance, and tolerance have rarely been studied. Here, we assessed these three defense traits under common garden conditions in a natural host–parasite system, the trematode eye‐fluke Diplostomum pseudospathaceum and its second intermediate fish host. We looked at host individuals originating from four genetically distinct populations of two closely related salmonid species (Atlantic salmon, Salmo salar and sea trout, Salmo trutta trutta) to estimate the magnitude of variation in these defense traits and the relationships among them. We show species‐specific variation in resistance and tolerance and population‐specific variation in resistance. Further, we demonstrate evidence for a trade‐off between resistance and tolerance. Our results suggest that the variation in host defense can at least partly result from a compromise between different interacting defense traits, the relative importance of which is likely to be shaped by environmental components. Overall, this study emphasizes the importance of considering different components of the host defense system when making predictions on the outcome of host–parasite interactions.  相似文献   

14.
Abstract Parasite resistance and body size are subject to directional natural selection in a population of feral Soay sheep (Ovis aries) on the island of St. Kilda, Scotland. Classical evolutionary theory predicts that directional selection should erode additive genetic variation and favor the maintenance of alleles that have negative pleiotropic effects on other traits associated with fitness. Contrary to these predictions, in this study we show that there is considerable additive genetic variation for both parasite resistance, measured as fecal egg count (FEC), and body size, measured as weight and hindleg length, and that there are positive genetic correlations between parasite resistance and body size in both sexes. Body size traits had higher heritabilities than parasite resistance. This was not due to low levels of additive genetic variation for parasite resistance, but was a consequence of high levels of residual variance in FEC. Measured as coefficients of variation, levels of additive genetic variation for FEC were actually higher than for weight or hindleg length. High levels of additive genetic variation for parasite resistance may be maintained by a number of mechanisms including high mutational input, balancing selection, antagonistic pleiotropy, and host‐parasite coevolution. The positive genetic correlation between parasite resistance and body size, a trait also subject to sexual selection in males, suggests that parasite resistance and growth are not traded off in Soay sheep, but rather that genetically resistant individuals also experience superior growth.  相似文献   

15.
Selection is expected to optimize reproductive investment resulting in characteristic trade‐offs among traits such as brood size, offspring size, somatic maintenance, and lifespan; relative patterns of energy allocation to these functions are important in defining life‐history strategies. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems, but little is known about their life‐history strategies, particularly patterns of fecundity and reproductive effort. Because mussels have an unusual life cycle in which larvae (glochidia) are obligate parasites on fishes, differences in host relationships are expected to influence patterns of reproductive output among species. I investigated fecundity and reproductive effort (RE) and their relationships to other life‐history traits for a taxonomically broad cross section of North American mussel diversity. Annual fecundity of North American mussel species spans nearly four orders of magnitude, ranging from < 2000 to 10 million, but most species have considerably lower fecundity than previous generalizations, which portrayed the group as having uniformly high fecundity (e.g. > 200000). Estimates of RE also were highly variable, ranging among species from 0.06 to 25.4%. Median fecundity and RE differed among phylogenetic groups, but patterns for these two traits differed in several ways. For example, the tribe Anodontini had relatively low median fecundity but had the highest RE of any group. Within and among species, body size was a strong predictor of fecundity and explained a high percentage of variation in fecundity among species. Fecundity showed little relationship to other life‐history traits including glochidial size, lifespan, brooding strategies, or host strategies. The only apparent trade‐off evident among these traits was the extraordinarily high fecundity of Leptodea, Margaritifera, and Truncilla, which may come at a cost of greatly reduced glochidial size; there was no relationship between fecundity and glochidial size for the remaining 61 species in the dataset. In contrast to fecundity, RE showed evidence of a strong trade‐off with lifespan, which was negatively related to RE. The raw number of glochidia produced may be determined primarily by physical and energetic constraints rather than selection for optimal output based on differences in host strategies or other traits. By integrating traits such as body size, glochidial size, and fecundity, RE appears more useful in defining mussel life‐history strategies. Combined with trade‐offs between other traits such as growth, lifespan, and age at maturity, differences in RE among species depict a broad continuum of divergent strategies ranging from strongly r‐selected species (e.g. tribe Anodontini and some Lampsilini) to K‐selected species (e.g. tribes Pleurobemini and Quadrulini; family Margaritiferidae). Future studies of reproductive effort in an environmental and life‐history context will be useful for understanding the explosive radiation of this group of animals in North America and will aid in the development of effective conservation strategies.  相似文献   

16.
M. Edenbrow  D. P. Croft 《Oikos》2013,122(5):667-681
Consistent individual differences in behaviour are well documented, for example, individuals can be defined as consistently bold or consistently shy. To date our understanding of the mechanisms underpinning consistent individual differences in behaviour (also termed behavioural types (BTs)) remains limited. Theoretical work suggests life‐history tradeoffs drive BT variation, however, empirical support is scarce. Moreover, whilst life‐history is known to be phenotypically plastic in response to environmental conditions during ontogeny, the extent to which such plasticity drives plasticity in behavioural traits and personality remains poorly understood. Using a natural clonal vertebrate, Kryptolebias marmoratus, we control for genetic variation and investigate developmental plasticity in life‐history and three commonly studied behavioural traits (exploration, boldness, aggression) in response to three ecologically relevant environments; conspecific presence, low food and perceived risk. Simulated predation risk was the only treatment that generated repeatable behaviour i.e. personality during ontogeny. Treatments differed in their effects on mean life‐history and behavioural scores. Specifically, low food fish exhibited reduced growth rate and exploration but did not differ from control fish in their boldness or aggression scores. Conspecific presence resulted in a strong negative effect on mean aggression, boldness and exploration during ontogeny but had minimal effect on life‐history traits. Simulated predation risk resulted in increased reproductive output but had minimal effect upon average behavioural scores. Together these results suggest that life‐history plasticity/variation may be insufficient in driving variation in personality during development. Finally, using offspring derived from each rearing environment we investigate maternal effects and find strong maternal influence upon offspring size, but not behaviour. These results highlight and support the current understanding that risk perception is important in shaping personality, and that social experience during ontogeny is a major influence upon behavioural expression.  相似文献   

17.
Despite considerable theoretical advances in the evolutionary biology of host–parasite systems, our knowledge of host–parasite coevolution in natural systems is often limited. Among the reasons for the lag of experimental insight behind theory is that the parasite's virulence is not a simple trait that is controlled by the parasite's genes. Rather, virulence can be expressed in several traits due to the subtle interactions between the host and the parasite. Furthermore, the host might evolve tolerance to the parasite if there is sufficient genetic variance to reduce the detrimental effect of the parasite on these traits. We studied the traits underlying virulence and the genetic potential to evolve tolerance to infection in the host–parasite system Aedes aegypti – Brachiola algerae . We reared the mosquitoes in a half-sib design, exposed half of the individuals in each full-sib family to the parasite and measured several life history traits – juvenile mortality, age at pupation and adult size – of infected and uninfected individuals. Virulence was due in large part to a delay of the mosquito's age at pupation by about 10%. Although this imposes strong selection pressure on the mosquito to resist the parasite, all of the mosquitoes were infected, implying a lack of resistance. Furthermore, although additive genetic variance was present for other traits, we found no indication of additive genetic variation for the age at pupation, nor for the delay of pupation due to infection, implying no potential for the evolution of tolerance. Overall, the results suggest that in this host–parasite system, the host has little evolutionary control over the expression of the parasite's virulence.  相似文献   

18.
1. In primary parasitoids, significant differences in life history and reproductive traits are observed among parasitoids attacking different stages of the same host species. Much less is known about hyperparasitoids, which attack different stages of primary parasitoids. 2. Parasitoids exploit hosts in two different ways. Koinobionts attack hosts that continue feeding and growing during parasitism, whereas idiobionts paralyse hosts before oviposition or attack non‐growing host stages, e.g. eggs or pupae. 3. Koino‐/idiobiosis in primary parasitoids are often associated with different expression of life history trade‐offs, e.g. endo‐ versus ectoparasitism, high versus low fecundity and short versus long life span. 4. In the present study, life history parameters of two koinobiont endoparasitic species (Alloxysta victrix; Syrphophagus aphidivorus), and two idiobiont ectoparasitic species (Asaphes suspensus; Dendrocerus carpenteri) of aphid hyperparasitoids were compared. These hyperparasitoids attack either the parasitoid larva in the aphid before it is killed and mummified by the primary parasitoid or the parasitoid prepupa or pupa in the dead aphid mummy. 5. There was considerable variation in reproductive success and longevity in the four species. The idiobiont A. suspensus produced the most progeny by far and had the longest lifespan. In contrast, the koinobiont A. victrix had the lowest fecundity. Other developments and life history parameters in the different species were variable. 6. The present results reveal that there was significant overlap in life history and reproductive traits among hyperparasitoid koinobionts and idiobionts, even when attacking the same host species, suggesting that selection for expression of these traits is largely association specific.  相似文献   

19.
Adaptation of the gypsy moth to an unsuitable host plant   总被引:2,自引:0,他引:2  
The pattern of adaptation with regard to life history traits and traits thought to be important in feeding habits of caterpillars in two populations of the gypsy moth (Lymantria dispar L.; Lepidoptera: Lymantriidae) originating from the locust tree (Robinia pseudoacacia; Fabaceae) and oak (Quercus petrea; Fagaceae) forests were investigated in the laboratory. The Robinia population has experienced unsuitable locust tree leaves as an exclusive food resource for more than 40 years. Since Quercus species are the principal host plants of the gypsy moth, the specific objectives of this study have been to measure the extent of differentiation between ancestral and derived populations in several life history traits (egg-to-adult viability, duration of larval and pupal stages, and pupal weight) and nutritional indices – relative growth rate (RGR), relative consumption rate (RCR), assimilation efficiency (AD), gross growth efficiency (ECI), and net growth efficiency (ECD). Significant differences between the Quercus and Robinia populations were detected in pupal duration, RGR, RCR, and AD. The presence of a significant population × host interaction in traits such as preadult viability, duration of pupal stage, RGR, and ECI suggests that adaptation of the gypsy moth to the unsuitable host might be ongoing. Using a full-sib design, we screened for genetic variation in life history traits within both populations, and examined the genetic correlations of performance across oak and locust leaves within both populations. The genetic variances for analyzed life history traits were lower under conditions that are commonly encountered in nature. Our data show that positive cross-host genetic correlations preponderate within both populations.  相似文献   

20.
Host–parasite coevolution is considered to be an important factor in maintaining genetic variation in resistance to pathogens. Drosophila melanogaster is naturally infected by the sigma virus, a vertically transmitted and host‐specific pathogen. In fly populations, there is a large amount of genetic variation in the transmission rate from parent to offspring, much of which is caused by major‐effect resistance polymorphisms. We have found that there are similarly high levels of genetic variation in the rate of paternal transmission among 95 different isolates of the virus as in the host. However, when we examined a transmission‐blocking gene in the host, we found that it was effective across virus isolates. Therefore, the high levels of genetic variation observed in this system do not appear to be maintained because of coevolution resulting from interactions between this host gene and parasite genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号