首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller‐bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top‐down and bottom‐up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal‐transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non‐local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top‐down and bottom‐up control.  相似文献   

2.
Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought‐induced mortality but also the risk of predation [a non‐consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate‐induced changes in rainfall may directly, or via altered hydrological stability, affect predator–prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change.  相似文献   

3.
When prey are differentially affected by intra and interspecific competition, the cooccurrence of multiple prey species alters the per capita availability of food for a particular prey species which could alter how prey respond to the threat of predation, and hence the overall‐effect of predators. We conducted an experiment to examine the extent to which the nonconsumptive and overall effect of predatory water bugs on snail and tadpole traits (performance and morphology) depended on whether tadpoles and snails cooccurred. Tadpoles and snails differed in their relative susceptibility to intraspecific and interspecific competition, and predators affected both prey species via consumptive and nonconsumptive mechanisms. Furthermore, the overall effect of predators often depended on whether another prey species was present. The reasoning for why the overall effect of predators depended on whether prey species cooccurred, however, differed for each of the response variables. Predators affected snail body growth via nonconsumptive mechanisms, but the change in the overall effect of predators on snail body growth was attributable to how snails responded to competition in the absence of predators, rather than a change in how snails responded to the threat of predation. Predators did not affect tadpole body growth via nonconsumptive mechanisms, but the greater vulnerability of competitively superior prey (snails) to predators increased the strength of consumptive mechanisms (and hence the overall effect) through which predators affected tadpole growth. Predators affected tadpole morphology via nonconsumptive mechanisms, but the greater propensity for predators to kill competitively superior prey (snails) enhanced the ability of tadpoles to alter their morphology in response to the threat of predation by creating an environment where tadpoles had a higher per capita supply of food available to invest in the development of morphological defenses. Our work indicates that the mechanisms through which predators affect prey depends on the other members of the community.  相似文献   

4.
A central question in evolutionary biology is how coevolutionary history between predator and prey influences their interactions. Contemporary global change and range expansion of exotic organisms impose a great challenge for prey species, which are increasingly exposed to invading non‐native predators, with which they share no evolutionary history. Here, we complete a comprehensive survey of empirical studies of coevolved and naive predator?prey interactions to assess whether a shared evolutionary history with predators influences the magnitude of predator‐induced defenses mounted by prey. Using marine bivalves and gastropods as model prey, we found that coevolved prey and predator‐naive prey showed large discrepancies in magnitude of predator‐induced phenotypic plasticity. Although naive prey, predominantly among bivalve species, did exhibit some level of plasticity – prey exposed to native predators showed significantly larger amounts of phenotypic plasticity. We discuss these results and the implications they may have for native communities and ecosystems.  相似文献   

5.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

6.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   

7.
8.
Many animals assess their risk of predation by listening to and evaluating predators' vocalizations. We reviewed the literature to draw generalizations about predator discrimination abilities, the retention of these abilities over evolutionary time, and the potential underlying proximate mechanisms responsible for discrimination. Broadly, we found that some prey possess an ability to respond to a predator after having been evolutionarily isolated from a specific predator (i.e., predators are allopatric) and that some prey are predisposed to respond to certain types of predators that they coevolved with but without having ecological experience. However, these types of studies are lacking, and relatively, few studies have examined predator discrimination abilities in ungulates. To begin addressing these knowledge gaps, we performed field experiments on Mule deer (Odocoileus hemionus) in which we investigated the ability of deer to discriminate among familiar predators [coyotes (Canis latrans) and mountain lions (Puma concolor)] and an evolutionary relevant predator with which deer have had no recent exposure [locally extinct wolves (Canis lupus)]. We found that Mule deer respond to and discriminate among predators based on predator vocalizations and have retained an ability to respond to wolves that have been extinct from the study area since the early 20th century. Previous playback studies have shown that responses vary among human‐habituated and non‐habituated populations and differ according to human proximity. Deer greater than 0.5 km from human residences allocated more time to heightened responses both before and after stimulus playback. Our findings may help predict how prey–predator interactions may change as a result of the recovering wolf population with a basis in ecological and evolutionary experience in predator discrimination and desensitization.  相似文献   

9.
Interspecific interactions are an integral aspect of ecosystem functioning that may be disrupted in an increasingly anthropocentric world. Industrial landscape change creates a novel playing field on which these interactions take place, and a key question for wildlife managers is whether and how species are able to coexist in such working landscapes. Using camera traps deployed in northern Alberta, we surveyed boreal predators to determine whether interspecific interactions affected occurrences of black bears (Ursus americanus), coyotes (Canis latrans), and lynx (Lynx canadensis) within a landscape disturbed by networks of seismic lines (corridors cut for seismic exploration of oil and gas reserves). We tested hypotheses of species interactions across one spatial‐only and two spatiotemporal (daily and weekly) scales. Specifically, we hypothesized that (1) predators avoid competition with the apex predator, gray wolf (Canis lupus), (2) they avoid competition with each other as intraguild competitors, and (3) they overlap with their prey. All three predators overlapped with wolves on at least one scale, although models at the daily and weekly scale had substantial unexplained variance. None of the predators showed avoidance of intraguild competitors or overlap with prey. These results show patterns in predator space use that are consistent with both facilitative interactions or shared responses to unmeasured ecological cues. Our study provides insight into how predator species use the working boreal landscape in relation to each other, and highlights that predator management may indirectly influence multiple species through their interactions.  相似文献   

10.
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.  相似文献   

11.
The ability of prey to recognize and adequately respond to predators determines their survival. Predator‐borne, post‐digestion dietary cues represent essential information for prey about the identity and the level of risk posed by predators. The phylogenetic relatedness hypothesis posits that prey should respond strongly to dietary cues from closely related heterospecifics but respond weakly to such cues from distantly related prey, following a hierarchical pattern. While such responses have mostly been observed in prey at their first encounter with predators, whether prey maintain such hierarchical levels of investment through time remains unclear. We investigated this question by exposing Rhacophorus arboreus tadpoles to the non‐consumptive effect of gape‐limited newt predators Cynops pyrrhogaster that were fed one of five prey diets across a gradient of phylogenetic relatedness: frog tadpoles (Rhacophorus arboreus, Rhacophorus schlegelii, Pelophylax nigromaculatus, and Hyla japonica) and medaka fish (Oryzias latipes). Predators’ diet, time, and their interaction significantly influenced tadpole activity level. We found support for the phylogenetic relatedness hypothesis: Investments in defense were stronger to cues from tadpole diets than to cues from fish diet. However, such a hierarchical response was recorded only in the first four days following predator exposure, then gradually disappear by day 8 on which the tadpoles exhibited similar activity level across all predator treatments. The findings suggest that, at least under the threat of gape‐limited predators, prey use phylogenetic information to evaluate risk and appropriately invest in defense during early encounters with predators; however, energy requirements may prevent prey from maintaining a high level of defense over long exposure to predation risk.  相似文献   

12.
Most forest ecosystems contain a diverse community of top‐level predators. How these predator species interact, and how their interactions influence their spatial distribution is still poorly understood. Here we studied interactions among top predators in a guild of diurnal forest raptors in order to test the hypothesis that predation among competing predators (intraguild predation) significantly affects the spatial distribution of predator species, causing subordinate species to nest farther away from the dominant ones. The study analyzed a guild in southwestern Europe comprising three raptor species. For 8 years we studied the spatial distribution of used nests, breeding phenology, intraguild predation, territory occupancy, and nest‐builder species and subsequent nest‐user species. The subordinate species (sparrowhawk Accipiter nisus) nested farther away from the dominant species (goshawk A. gentilis), which preyed on sparrowhawks but not on buzzards Buteo buteo, and closer to buzzards, with which sparrowhawks do not share many common prey. This presumably reflects an effort to seek protection from goshawks. This potential positive effect of buzzards on sparrowhawks may be reciprocal, because buzzards benefit from old sparrowhawk nests, which buzzards used as a base for their nests, and from used sparrowhawk nests, from which buzzards stole prey. Buzzards occasionally occupied old goshawk nests. These results support our initial hypothesis that interspecific interactions within the raptor guild influence the spatial distribution of predator species in forest ecosystems, with intraguild predation as a key driver. We discuss several mechanisms that may promote the coexistence of subordinate and dominant predators and the spatial assembly of this raptor guild: spatial refuges, different breeding phenology, spatial avoidance, low territory occupancy between neighboring nesting territories, nest concealment and protection, and diet segregation.  相似文献   

13.
14.
15.
Top predators cause avoidance behaviours in competitors and prey, which can lead to niche partitioning and facilitate coexistence. We investigate changes in partitioning of the temporal niche in a mammalian community in response to both the rapid decline in abundance of a top predator and its rapid increase, produced by two concurrent natural experiments: 1) the severe decline of the Tasmanian devil due to a transmissible cancer, and 2) the introduction of Tasmanian devils to an island, with subsequent population increase. We focus on devils, two mesopredators and three prey species, allowing us to examine niche partitioning in the context of intra‐ and inter‐specific competition, and predator–prey interactions. The most consistent shift in temporal activity occurred in devils themselves, which were active earlier in the night at high densities, presumably because of heightened intraspecific competition. When devils were rare, their closest competitor, the spotted‐tailed quoll, increased activity in the early part of the night, resulting in increased overlap with the devil's temporal niche and suggesting release from interference competition. The invasive feral cat, another mesopredator, did not shift its temporal activity in response to either decreasing or increasing devil densities. Shifts in temporal activity of the major prey species of devils were stronger in response to rising than to falling devil densities. We infer that the costs associated with not avoiding predators when their density is rising (i.e. death) are higher than the costs of continuing to adopt avoidance behaviours as predator densities fall (i.e. loss of foraging opportunity), so rising predator densities may trigger more rapid shifts. The rapid changes in devil abundance provide a unique framework to test how the non‐lethal effects of top predators affect community‐wide partitioning of temporal niches, revealing that this top predator has an important but varied influence on the diel activity of other species.  相似文献   

16.
17.
The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish (Silurus glanis) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd (Scardinius erythrophthalmus), roach (Rutilus rutilus), and perch (Perca fluviatilis). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.  相似文献   

18.
1. We experimentally tested if a multiplicative risk model accurately predicted the consumption of a common mayfly at risk of predation from three predator species in New Zealand streams. Deviations between model predictions and experimental observations were interpreted as indicators of ecologically important interactions between predators. 2. The predators included a drift‐feeding fish [brown trout (T), Salmo trutta], a benthivorous fish [galaxiid (G), koaro, Galaxias brevipennis] and a benthic predatory stonefly (S; Stenoperla sp.) with Deleatidium sp. mayflies as prey. Eight treatments with all predator species combinations and a predator‐free control were used. Experiments were performed in aquaria with cobbles as predator refuges for mayflies and we measured the proportion of prey consumed after 6 h for both day and night trials. 3. Trout consumed a higher proportion of prey than other predators. For the two predator treatments we found less than expected prey consumption in the galaxiid + trout treatment (G + T) for both day and night trials, whereas a higher than expected proportion of prey was consumed during night time in the stonefly + trout (S + T) treatment. 4. The results indicate interference (G + T) and facilitation (S + T) between predators depending on predator identity and time of day. Thus, to make accurate predictions of interspecific interactions, it is necessary to consider the ecology of individual species and how differences influence the direction and magnitude of interactions.  相似文献   

19.
Coreen Forbes  Edd Hammill 《Oikos》2013,122(12):1662-1668
The total effect of predators on prey is a combination of direct consumption, and non‐consumptive effects (NCEs), such as predator‐induced changes to prey morphology, behaviour and life history. Past research into NCEs has tended to focus on pair‐wise interactions between predators and prey, while in natural ecosystems, species exist in complex communities with several trophic levels made up of multiple autotrophic and heterotropic species. To address how predator NCEs alter the photosynthetic and heterotrophic components of communities, we exposed microbial microcosms to one of three predator treatments: live predators (full predator effect), freeze‐killed predators (NCEs only) or no predators (control), and incubated them under either 12 h:12 h light:dark conditions or continual darkness. Under 12 h:12 h light:dark conditions, NCEs‐only communities never differed from predator‐free communities, but differed from live predator communities. Under conditions of continual darkness, the structure of NCEs‐only communities differed from predator‐free controls, but not from live predator communities, suggesting NCEs can be strong enough to structure communities. Predation threat may cause certain prey to induce defences, such as reductions in movement, which make them less competitive in a community setting. This reduction in competitive ability could lead to these species being driven to extinction through interspecific competition, resulting in similar communities to those in which live predators are present. Heterotrophic species whose rates of resource acquisition depend on movement rates may be affected to a greater extent than autotrophs by predator‐induced reductions in movement, accounting for our observed differences in predator NCEs in ‘dark’ and ‘light’ communities. Our results suggest that the community‐level consequences of fear are greater in the dark. Synthesis Predators affect prey through consumptive and non‐consumptive effects (NCEs) such as alterations to prey behaviour, morphology, and life history. However, predators and prey do not exist in isolated pairs, but in complex communities where they interact with many other species. Using a long term study (>10 predator generations), we show that predator NCEs alone can alter community structure under conditions of darkness, but not in a 12h:12h light:dark cycle. Our results demonstrate for the first time that although the community‐level consequences of predator NCEs may be dramatic, they depend upon the abiotic conditions of the ecosystem.  相似文献   

20.
Upon sensing predators in their vicinity, many prey species perform antipredator displays that are thought to provide information to the predator that deters it from attacking (predator‐deterrent signals). These displays can be complex, incorporating a variety of signaling elements as well as direct physical harassment of the predator. Although the display behaviors in these communication systems are often well characterized, evidence of the efficacy of these displays in deterring predators is limited due to the challenges associated with studying free‐ranging predators. Here, we examine how the anti‐snake signals of the desert kangaroo rat (Dipodomys deserti) influence the ambush hunting behaviors of sidewinder rattlesnakes (Crotalus cerastes). We found that, although desert kangaroo rats incorporate a number of signal elements into their antipredator display, only sand kicking behavior was a significant factor in motivating sidewinder rattlesnakes to cease hunting: high rates of sand kicking led to early abandonment of ambush coils. These results indicate that anti‐snake displays of small mammals may be especially effective at mitigating the threat posed by rattlesnakes when those displays incorporate physical harassment as well as signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号