首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zhu JJ  Li FB  Zhu XF  Liao WM 《Life sciences》2006,78(13):1469-1477
p33ING1b induces cell cycle arrest and stimulates DNA repair, apoptosis and chemosensitivity. The magnitude of some p33ING1b effects may be due to activation of the tumor suppressor p53. To investigate if the p33ING1b protein affected chemosensitivity of osteosarcoma cells, we overexpressed p33ING1b in p53+/+ U2OS cells or in p53-mutant MG63 cells, and then assessed for growth arrest and apoptosis after treatment with etoposide. p33ING1b increased etoposide-induced growth inhibition and apoptosis to a much greater degree in p53+/+ U2OS cells than in p53-mutant MG63 cells. Moreover, ectopic expression of p33ING1b markedly upregulated p53, p21WAF1 and bax protein levels and activated caspase-3 protein kinase in etoposide-treated U2OS cells. Together, our data indicate that p33ING1b prominently enhances etoposide-induced apoptosis through p53-dependent pathways in human osteosarcoma cells. p33ING1b may be an important marker and/or therapeutic target in the prevention and treatment of metastatic osteosarcoma.  相似文献   

3.
Osteosarcoma becomes the second leading cause of cancer death in the younger population. Current outcomes of chemotherapy on osteosarcoma were unsatisfactory to date, demanding development of effective therapies. Tea is a commonly used beverage beneficial to human health. As a major component of tea, theabrownin has been reported to possess anti‐cancer activity. To evaluate its anti‐osteosarcoma effect, we established a xenograft model of zebrafish and employed U2OS cells for in vivo and in vitro assays. The animal data showed that TB significantly inhibited the tumour growth with stronger effect than that of chemotherapy. The cellular data confirmed that TB‐triggered DNA damage and induced apoptosis of U2OS cells by regulation of Mki67, PARP, caspase 3 and H2AX, and Western blot assay showed an activation of p53 signalling pathway. When P53 was knocked down by siRNA, the subsequent downstream signalling was blocked, indicating a p53‐dependent mechanism of TB on U2OS cells (p53 wt). Using osteosarcoma cell lines with p53 mutations (HOS, SAOS‐2 and MG63), we found that TB exerted stronger inhibitory effect on U2OS cells than that on p53‐mut cell lines, but it also exerted obvious effect on SAOS‐2 cells (p53 null), suggesting an activation of p53‐independent pathway in the p53‐null cells. Interestingly, theabrownin was found to have no toxicity on normal tissue in vivo and could even increase the viability of p53‐wt normal cells. In sum, theabrownin could trigger DNA damage and induce apoptosis on U2OS cells via a p53‐dependent mechanism, being a promising candidate for osteosarcoma therapy.  相似文献   

4.
Recent studies have focused on the anti-tumor activity of capsaicin. However, the potential effects of capsaicin in osteosarcoma cells and the underlying mechanisms are not fully understood. In the current study, we observed that capsaicin-induced growth inhibition and apoptosis in cultured osteosarcoma cells (U2OS and MG63), which were associated with a significant AMP-activated protein kinase (AMPK) activation. AMPK inhibition by compound C or RNA interference suppressed capsaicin-induced cytotoxicity, while AMPK activators (AICAR and A769662) promoted osteosarcoma cell death. For the mechanism study, we found that AMPK activation was required for capsaicin-induced mTORC1 (mTOR complex 1) inhibition, B cell lymphoma 2 (Bcl-2) downregulation and Bax upregulation in MG63 cells. Capsaicin administration induced p53 activation, mitochondrial translocation and Bcl-2 killer association, such effects were dependent on AMPK activation. Interestingly, we observed a significant pro-apoptotic c-Jun NH2-terminal kinases activation by capsaicin in MG63 cells, which appeared to be AMPK independent. In conclusion, capsaicin possessed strong efficacy against human osteosarcoma cells. Molecular studies revealed that capsaicin activated AMPK-dependent and AMPK-independent signalings to mediate cell apoptosis. The results of this study should have significant translational relevance in managing this deadly malignancy.  相似文献   

5.
Recent studies have indicated that promoting ferroptosis is a promising approach to attenuate drug resistance of cancer cells. Hence, this study aimed to induce ferroptosis in osteosarcoma cells, thereby increasing the sensitivity to cisplatin. Osteosarcoma cells MG63 and Saos‐2 were incubated with increasing doses of cisplatin to generate cisplatin‐resistant strains, MG63/DDP and Saos‐2/DDP. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate cell proliferation and cell death, respectively. Malondialdehyde (MDA), reactive oxygen species (ROS), and lipid oxidation in cells were measured to evaluate the degree of cell ferroptosis. MG63/DDP and Saos‐2/DDP cells showed increased viability and decreased death rate compared with MG63 and Saos‐2 cells, respectively, upon cisplatin treatment. Western blotting analysis indicated that protein levels of p‐STAT3 (Ser727), nuclear factor erythroid 2‐related factor 2 (Nrf2), and glutathione peroxidase 4 (GPx4) in drug‐resistant strains increased significantly in response to cisplatin. Co‐treatment with cisplatin and agonists of ferroptosis, Erastin, and RSL3, remarkably increased MDA, ROS, lipid oxidation, and sensitivity to cisplatin, in MG63/DDP and Saos‐2/DDP cells. Similar results were observed by co‐treatment of cells with cisplatin and a STAT3 inhibitor. The reduction of protein levels of p‐STAT3 (Ser727), Nrf2, and GPx4 in MG63/DDP and Saos‐2/DDP cells resulted in increased ferroptosis and sensitivity to cisplatin. These results indicate that cisplatin‐resistant osteosarcoma cells inhibited ferroptosis after exposure to low doses of cisplatin. However, ferroptosis agonists and STAT3 inhibitor reactivated ferroptosis in the cells and consequently increased sensitivity to cisplatin. This study demonstrates a new approach to attenuate resistance of osteosarcoma to cisplatin in vitro .  相似文献   

6.
7.
8.
9.
Studies have shown that exosomes can mediate the chemoresistance of drug-resistant cells by transmitting circular RNAs (circRNAs). However, the role of exosome-derived hsa_circ_103801 (exosomal hsa_circ_103801) in osteosarcoma (OS) remains unclear. The level of hsa_circ_103801 was upregulated in the serum exosomes from patients with OS, and OS patients with high hsa_circRNA_103801 expression had a shorter survival time relative to patients with low hsa_circ_103801 expression. The expression of hsa_circ_103801 was upregulated in cisplatin-resistant MG63 (MG63/CDDP) cells compared with that in MG63 cells. In addition, hsa_circ_103801 was highly enriched in exosomes derived from CDDP-resistant OS cells and could be delivered to MG63 and U2OS cells through exosomes. Exosomes derived from CDDP-resistant cells were shown to reduce the sensitivity of MG63 and U2OS cells to CDDP, inhibit apoptosis, and increase the expression of multidrug resistance-associated protein 1 and P-glycoprotein. Moreover, exosomal hsa_circ_103801 could strengthen the promotive effect of exosomes on the chemoresistance of MG63 and U2OS cells to CDDP. Hence, serum exosomal hsa_circ_103801 may serve as an effective prognostic biomarker for OS, and exosomal hsa_circ_103801 could be a potential target for overcoming OS chemoresistance.  相似文献   

10.
Osteosarcoma is the most common primary bone cancer that affects adolescents with early metastatic potential and drastically reduces their long-term survival rate if pulmonary metastases are detected at diagnosis. The natural naphthoquinol compound deoxyshikonin exhibits anticancer properties, so we hypothesized that it has an apoptotic effect on osteosarcoma U2OS and HOS cells and studied its mechanisms. After deoxyshikonin treatment, dose-dependent decreases in cell viability, induction of cell apoptosis and arrest in the sub-G1 phase of U2OS and HOS cells were observed. The increases in cleaved caspase 3 expression and the decreases in X-chromosome-linked IAP (XIAP) and cellular inhibitors of apoptosis 1 (cIAP-1) expressions after deoxyshikonin treatment in the human apoptosis array were identified in HOS cells, and dose-dependent expression changes of IAPs and cleaved caspase 3, 8 and 9 were verified by Western blotting in U2OS and HOS cells. Phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2 and p38 expressions in U2OS and HOS cells was also increased by deoxyshikonin in a dose-dependent manner. Subsequently, cotreatment with inhibitors of ERK (U0126), JNK (JNK-IN-8) and p38 (SB203580) was performed to show that p38 signalling is responsible for deoxyshikonin-induced apoptosis in U2OS and HOS cells, but not via the ERK and JNK pathways. These discoveries demonstrate that deoxyshikonin may be a possible chemotherapeutic candidate to induce cell arrest and apoptosis by activating extrinsic and intrinsic pathways through p38 for human osteosarcoma.  相似文献   

11.
This study was aimed to investigate the ability of a flavonoid compound breviscapine (BVP) to suppress growth and elicit apoptosis in human osteosarcoma (OS) Saos‐2 cells. The cells were cultured in vitro and treated with three concentrations of BVP (80, 160, and 320 μg/ml). Moreover, C57 mice were injected with Saos‐2 cells to establish a subcutaneous xenograft model, and they were subsequently treated with three doses of BVP via intraperitoneal injection. The viability of the cells was examined by the Cell Counting Kit‐8 method. The apoptotic cells were assessed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The tumor volume and weight were monitored from day 3 through day 21 after the last injection. The expression of bax, bcl‐2, and cytochrome c (cyt c) mRNA was detected by a real‐time polymerase chain reaction. The protein levels of bax, bcl‐2, cyt c, caspase 3, and caspase 9 were evaluated by Western blot. The expression and distribution of bcl‐2 and bax in tissues were detected by immunohistochemistry. Compared with the control group, BVP treatment inhibited cell proliferation and induced apoptosis of Saos‐2 cells in vitro. Consistently, treatment of mice bearing transplanted tumors with BVP suppressed the growth of OS tumors and promoted cell apoptosis; it also reduced tumor volume and weight. Mechanistically, BVP‐induced apoptosis was mediated by the mitochondria‐dependent pathway, as evidenced by the increased expression of bax and cyt c and the decreased expression of bcl‐2, as well as activation of caspase 9 and caspase 3 in vitro and in vitro. Collectively, BVP inhibits growth and promotes apoptosis of OS by activating the mitochondrial apoptosis pathway.  相似文献   

12.
13.
A novel cancer stem‐like cell line (3AB‐OS), expressing a number of pluripotent stem cell markers, was irreversibly selected from human osteosarcoma MG‐63 cells by long‐term treatment (100 days) with 3‐aminobenzamide (3AB). 3AB‐OS cells are a heterogeneous and stable cell population composed by three types of fibroblastoid cells, spindle‐shaped, polygonal‐shaped, and rounded‐shaped. With respect to MG‐63 cells, 3AB‐OS cells are extremely smaller, possess a much greater capacity to form spheres, a stronger self‐renewal ability and much higher levels of cell cycle markers which account for G1‐S/G2‐M phases progression. Differently from MG‐63 cells, 3AB‐OS cells can be reseeded unlimitedly without losing their proliferative potential. They show an ATP‐binding cassette transporter ABCG2‐dependent phenotype with high drug efflux capacity, and a strong positivity for CD133, marker for pluripotent stem cells, which are almost unmeasurable in MG‐63 cells. 3AB‐OS cells are much less committed to osteogenic and adipogenic differentiation than MG‐63 cells and highly express genes required for maintaining stem cell state (Oct3/4, hTERT, nucleostemin, Nanog) and for inhibiting apoptosis (HIF‐1α, FLIP‐L, Bcl‐2, XIAP, IAPs, and survivin). 3AB‐OS may be a novel tumor cell line useful for investigating the mechanisms by which stem cells enrichment may be induced in a tumor cell line. The identification of a subpopulation of cancer stem cells that drives tumorigenesis and chemoresistance in osteosarcoma may lead to prognosis and optimal therapy determination. Expression patterns of stem cell markers, especially CD133 and ABCG2, may indicate the undifferentiated state of osteosarcoma tumors, and may correlate with unfavorable prognosis in the clinical setting. J. Cell. Physiol. 219: 301–313, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
WIN55,212‐2, a cannabinoid receptor agonist, can activate cannabinoid receptors, which has proven anti‐tumour effects in several tumour types. Studies showed that WIN can inhibit tumour cell proliferation and induce apoptosis in diverse cancers. However, the role and mechanism of WIN in osteosarcoma are still unclear. In this study, we examined the effect of WIN55,212‐2 on osteosarcoma cell line Saos‐2 in terms of cell viability and apoptosis. Meanwhile, we further explored the role of endoplasmic reticulum stress and autophagy in apoptosis induced by WIN55,212‐2. Our results showed that the cell proliferation of Saos‐2 was inhibited by WIN55,212‐2 in a dose‐dependent and time‐dependent manner. WIN55,212‐2‐induced Saos‐2 apoptosis through mitochondrial apoptosis pathway. Meanwhile, WIN55,212‐2 can induce endoplasmic reticulum stress and autophagy in Saos‐2 cells. Inhibition of autophagy and enhancement of endoplasmic reticulum stress increased apoptosis induced by WIN55,212‐2 in Saos‐2 cells. These findings indicated that WIN55,212‐2 in combination with autophagic inhibitor or endoplasmic reticulum stress activator may shed new light on osteosarcoma treatment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
p53-independent apoptosis is induced by the p19ARF tumor suppressor   总被引:6,自引:0,他引:6  
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2.  相似文献   

17.
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are the nuclear structure consisting of various proteins such as PML, SUMO-1, and p53. PML-NBs are implicated in the regulation of tumor suppression, antiviral responses, and apoptosis. In this study, we searched for bioactive metabolites that would promote the formation of PML-NBs in tumor cells. As a result, methyl 2,5-dihydromethylcinnimate (2,5-MeC), a tyrosine kinase inhibitor, enhanced expression and/or stability of PML proteins and induced PML-NB formation in p53 null H1299 cells established from non-small cell lung cancer (NSCLC) and wild-type p53-expressing U2OS cells derived from osteosarcoma. Furthermore, it enhanced apoptosis by exogenously expressed wild type p53 and the expression of p53-responsive genes, such as PUMA and p21, in H1299 cells. 2,5-MeC also activated endogenous p53 and induced apoptosis in U2OS cells. The results suggest that 2,5-MeC is likely to be a promising candidate drug for the clinical treatment of terminal cancer-expressing wild-type p53.  相似文献   

18.
19.
20.
Osteosarcoma is the 3rd most common human cancer in childhood and young adults, and is the leading cause of mortality. Recent studies suggest that miRNAs could regulate the growth and progression of osteosarcoma, indicating some novel targets for therapy. In our study, we demonstrated that miR-451 was down-regulated in human osteosarcoma U2OS, SAOS, and MG63 cells lines as well as in tumor tissue surgically resected compared with the normal tissues. Overexpression of miR-451 inhibited cell proliferation and resulted in cell apoptosis in osteosarcoma cells. G1 cell cycle arrest was also induced by miR-451. Repressed by miR-451, PGE2 and CCND1 reversed the inhibitory effects of miR-451 on proliferation. In conclusion, miR-451 played a tumor-suppressing role through modulating the expression of PGE2 and CCND1, suggesting a novel target for the diagnosis and treatment of osteosarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号