首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Natural glycosaminoglycans (GAGs) and chemically modified GAG derivatives are known to support osteogenic differentiation of mesenchymal stromal cells (MSC). This effect has mainly been described to be mediated by increasing the effectiveness of bone anabolic growth factors such as bone morphogenetic proteins (BMPs) due to the binding and presentation of the growth factor or by modulating its signal transduction pathway. In the present study, the influence of chondroitin sulfate (CS) and two chemically over‐sulfated CS derivatives on osteogenic differentiation of human mesenchymal stromal cells (hMSC) and on BMP‐2 and transforming growth factor β1 (TGF‐β1) signalling was investigated. Over‐sulfated CS derivatives induced an increase of tissue non‐specific alkaline phosphatase (TNAP) activity and calcium deposition, whereas collagen synthesis was slightly decreased. The BMP‐2‐induced Smad1/5 activation was inhibited in the presence of over‐sulfated CS derivatives leading to a loss of BMP‐2‐induced TNAP activity and calcium deposition. In contrast, the TGF‐β1‐induced activation of Smad2/3 and collagen synthesis were not affected by the over‐sulfated CS derivatives. BMP‐2 and TGF‐β1 did not activate the extracellular signal‐regulated kinase 1/2 or mitogen‐activated protein kinase p38 in hMSC. These data suggest that over‐sulfated CS derivatives themselves are able to induce osteogenic differentiation, probably independent of BMP‐2 and TGF‐β1 signalling, and offer therefore an interesting approach for the improvement of bone healing. J. Cell. Physiol. 228: 330–340, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We previously demonstrated that bone morphogenetic protein (BMP) 9 is one of the most potent and yet least characterized BMPs that are able to induce osteogenic differentiation of MSCs both in vitro and in vivo. Here, we conducted gene expression-profiling analysis and identified that Hey1 of the hairy/Enhancer of split-related repressor protein basic helix-loop-helix family was among the most significantly up-regulated early targets in BMP9-stimulated MSCs. We demonstrated that Hey1 expression was up-regulated at the immediate early stage of BMP9-induced osteogenic differentiation. Chromatin immunoprecipitation analysis indicated that Hey1 may be a direct target of the BMP9-induced Smad signaling pathway. Silencing Hey1 expression diminished BMP9-induced osteogenic differentiation both in vitro and in vivo and led to chondrogenic differentiation. Likewise, constitutive Hey1 expression augmented BMP9-mediated bone matrix mineralization. Hey1 and Runx2 were shown to act synergistically in BMP9-induced osteogenic differentiation, and Runx2 expression significantly decreased in the absence of Hey1, suggesting that Runx2 may function downstream of Hey1. Accordingly, the defective osteogenic differentiation caused by Hey1 knockdown was rescued by exogenous Runx2 expression. Thus, our findings suggest that Hey1, through its interplay with Runx2, may play an important role in regulating BMP9-induced osteoblast lineage differentiation of MSCs.  相似文献   

6.
7.
8.
9.
Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4‐induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up‐regulates BMP4‐induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP‐10), which then promotes BMP4‐induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP‐10 up‐regulation activated Wnt/β‐catenin signalling to enhance BMP4‐induced osteogenesis, with pro‐adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP‐10 crosstalk regulates BMP4‐induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.  相似文献   

10.
11.
12.
Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations.  相似文献   

13.
14.
15.
16.
17.
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross‐talks with BMP9 and regulates BMP9‐induced osteogenic differentiation. We find that EGF potentiates BMP9‐induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG‐1478 and AG‐494 in a dose‐ and time‐dependent manner. Furthermore, EGF significantly augments BMP9‐induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9‐induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up‐regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross‐talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.  相似文献   

18.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

19.
Zheng Q  Huang G  Yang J  Xu Y  Guo C  Xi Y  Pan Z  Wang J 《Biological chemistry》2007,388(7):755-763
Microgravity (MG) results in a reduction in bone formation. Bone formation involves osteogenic differentiation from mesenchymal stem cells (hMSCs) in bone marrow. We modeled MG to determine its effects on osteogenesis of hMSCs and used activators or inhibitors of signaling factors to regulate osteogenic differentiation. Under osteogenic induction, MG reduced osteogenic differentiation of hMSCs and decreased the expression of osteoblast gene markers. The expression of Runx2 was also inhibited, whereas the expression of PPARgamma2 increased. MG also decreased phosphorylation of ERK, but increased phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, was able to inhibit the phosphorylation of p38MAPK, but did not reduce the expression of PPARgamma2. Bone morphogenetic protein (BMP) increased the expression of Runx2. Fibroblast growth factor 2 (FGF2) increased the phosphorylation of ERK, but did not significantly increase the expression of osteoblast gene markers. The combination of BMP, FGF2 and SB203580 significantly reversed the effect of MG on osteogenic differentiation of hMSCs. Our results suggest that modeled MG inhibits the osteogenic differentiation and increases the adipogenic differentiation of hMSCs through different signaling pathways. Therefore, the effect of MG on the differentiation of hMSCs could be reversed by the mediation of signaling pathways.  相似文献   

20.
Background and objectives: Adipose tissue‐derived stem cells (ASCs) have great potential for regenerative medicine. For molecular understanding of specific functional molecules present in ASCs, we analysed 756 proteins including specific chondrogenic functional factors, using high‐throughput nano reverse‐phase liquid chromatography–electrospray ionization–tandem mass spectrometry. Materials, methods and results: Of these proteins, 33 were identified as chondrogenic factors or proteins including type 2 collagen, biglycan, insulin‐like growth factor‐binding protein and transforming growth factor‐beta 1 (TGF‐β1). ASCs are a possible cell source for cartilage regeneration as they are able to secrete a number of functional cytokines including chondrogenesis‐inducing molecules such as TGF‐β1 and bone morphogenetic protein 4 (BMP4). The chondrogenic phenotype of cultured ASCs was effectively induced by ASC‐culture media (CM) containing BMP4 and TGF‐β1, and maintained after pre‐treatment for 14 days in vitro and subcutaneous implantation in vivo. Chondrogenic differentiation efficiency of cultured ASCs and cultured mouse skin‐derived progenitor cells (SPCs) depended absolutely on ASC CM‐fold concentration. Cell density was also a very important factor for chondrogenic behaviour development during differentiation of ASCs and SPCs. Conclusion: ASC CM‐derived TGF‐β1‐induced chondrogenic differentiation of ASCs resulted in significant reduction in chondrogenic activity after inhibition of the p38 pathway, revealing involvement of this MAPK pathway in TGF‐β1 signalling. On the other hand, TGF‐β1 signalling also led to SMAD activation that could directly increase chondrogenic activity of ASCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号