共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
John P. Flaherty Catrina A. Spruce Heather E. Fairfield David E. Bergstrom 《Genesis (New York, N.Y. : 2000)》2010,48(9):568-575
NADPH oxidase complexes are multiprotein assemblies that generate reactive oxygen species in a variety of mammalian tissues. The canonical phagocytic oxidase consists of a heterodimeric, enzymatic core comprised of the transmembrane proteins, CYBB andCYBA and is regulated, in part, by an “organizing” function of NCF1 and an “activating” activity of NCF2. In contexts outside of the phagocyte, these regulatory functions may be encoded not only by NCF1 and NCF2, but also alternatively by their respective paralogues, NOXO1 and NOXA1. To allow tissue‐specific dissection of Noxa1 function in mouse, we have generated an allele of Noxa1 suitable for conditional inactivation. Moreover, by crossing Noxa1 conditional allele carriers to B6.129S4‐Meox2tm1(Cre)Sor/J mice, we have generated first, Noxa1‐null heterozygotes, and ultimately, Noxa1‐null homozygotes. Through the thoughtful use of tissue‐specific, Cre‐expressing mouse strains, the Noxa1 conditional allele will offer insight into the roles of NOXA1 in the variety of tissues in which it is expressed. genesis 48:568–575, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
3.
Bensoussan V Lallemand Y Moreau J Cloment CS Langa F Robert B 《Genesis (New York, N.Y. : 2000)》2008,46(5):276-282
4.
The Notch signaling pathway is an evolutionarily‐conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. The Jagged2 (Jag2) gene, which encodes a ligand for Notch pathway receptors, is required for craniofacial, limb, and T cell development. Mice homozygous for a Jag2 null allele die at birth from cleft palate, precluding study of Jag2 function in postnatal and adult mice. We have generated a Jag2 conditional null allele by flanking the first two exons of the Jag2 gene with loxP sites. Cre‐mediated deletion of the Jag2flox allele generates the Jag2del2 allele, which behaves genetically as a Jag2 null allele. This Jag2 conditional null allele will enable investigation of Jag2 function in a variety of tissue‐specific contexts. genesis 48:390–393, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
5.
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. We previously described construction and analysis of a hypomorphic allele of the Notch2 gene. Homozygosity for this allele leads to embryonic and perinatal lethality due to cardiovascular and kidney defects. We report here novel Notch2 mutant alleles generated by gene targeting in embryonic stem cells, including a conditional null allele in which exon 3 of the Notch2 gene is flanked by loxP sequences. These new Notch2 mutant alleles expand the set of tools available for studying the myriad roles of the Notch pathway during mammalian development and will enable analysis of Notch2 function at additional stages of embryogenesis and in adult mice. 相似文献
7.
The Bambi (Bmp and activin membrane-bound inhibitor) gene encodes a transmembrane protein highly similar in amino acid sequence to transforming growth factor-beta (TGF-beta receptors, however, the Bambi intracellular domain is short and lacks a serine/threonine-kinase domain that is essential for transducing TGF beta signaling. Previous biochemical assays showed that Bambi interacts directly with BMP receptors and antagonizes BMP signaling. Interestingly, the expression of Bambi largely overlaps, both temporally and spatially, with that of Bmp4 during early embryonic development in Xenopus, zebrafish, and mice, which led to the hypothesis that Bambi may function to regulate BMP signaling during embryogenesis. To directly analyze the roles of Bambi during embryonic development, we generated mice carrying a conditional allele of Bambi, Bambi(flox), with loxP sequences flanking the first exon that encodes the N-terminus and signal peptide region of the Bambi protein. Mice homozygous for this targeted conditional allele appear normal and fertile. We crossed the Bambi(flox)/+ mice to the EIIa-Cre transgenic mice and generated mice carrying deletion of the first exon of the Bambi gene. Surprisingly, mice homozygous for the deleted allele were viable, fertile and did not exhibit any discernible developmental defect. Our data exclude an essential role for Bambi in mouse embryonic development and postnatal survival. 相似文献
8.
9.
Tan Y Dourdin N Wu C De Veyra T Elce JS Greer PA 《Genesis (New York, N.Y. : 2000)》2006,44(6):297-303
Ubiquitous mu- and m-calpain proteases are implicated in development and apoptosis. They are heterodimers consisting of 80-kDa catalytic subunits encoded by capn1 and capn2, respectively, and a common 28-kDa regulatory subunit encoded by capn4. The regulatory subunit is required to maintain stability and activity of mu- and m-calpains; thus, genetic disruption of capn4 was predicted to eliminate both calpain activities. Germline disruption of capn4 caused embryonic lethality, hampering the use of those mouse models to explore physiological calpain functions. Here we describe a loxP/cre conditional capn4 targeted mouse model that enables tissue-specific and temporal deletion of calpain activity. Disruption of the floxed capn4 gene using a ubiquitous cytomegalovirus promoter driven Cre recombinase transgene led to midgestation embryonic lethality. Fibroblasts from these embryos lacked detectable regulatory subunit expression, had reduced levels of the mu- and m-calpain catalytic subunits, and had no detectable mu- and m-calpain activities. These defects were corrected with a capn4-encoding lentivirus. 相似文献
10.
11.
Long Q Shelton KD Lindner J Jones JR Magnuson MA 《Genesis (New York, N.Y. : 2000)》2004,39(4):256-262
Recombinase-mediated cassette exchange (RMCE), when applied to mouse embryonic stem (ES) cells, promises to increase the ease with which genetic alterations can be introduced into targeted genomic loci in the mouse. However, existing selection strategies for identifying ES cells in which replacement DNA cassettes from a carrier plasmid have been exchanged correctly into a defined locus are suboptimal. Here, we report the generation in mouse ES cells of a loxed cassette acceptor (LCA) allele within the glucokinase (gk) gene locus. Using the gkLCA as a test allele, we developed a staggered positive-negative selection strategy that facilitates efficient identification of ES cell clones in which a DNA replacement cassette from a carrier plasmid has been exchanged correctly into the gkLCA allele. This selection strategy, by facilitating more efficient production of ES cell clones with various replacement DNA cassettes, should accelerate targeted repetitive introduction of gene modifications into the mouse. 相似文献
12.
根据GenBank已发表的pEGFP-C1序列,设计并合成两对引物,PCR扩增出两端各含一loxP位点的GFP表达盒GFP-loxP。克隆于转移载体pSKLR获得pSKLR-GFP-loxP。基于同源重组原理, pSKLR-GFP-loxP与 PRV SH株基因组DNA共转染293T细胞,在BrdU 的筛选压力下,利用蚀斑法在TK-143细胞上筛选出表达GFP的TK基因缺失的重组毒株rPRV1。将表达Cre酶的质粒载体pPOG231与rPRV1基因组DNA共转染293T细胞,在Cre酶的作用下去除GFP表达盒以及一个loxP位点,筛选得到含单个loxP位点的重组病毒株rPRV2。PCR 扩增证实所获得的重组病毒TK缺失270bp,只有一个34bp的loxP位点,并且能在RK-13细胞上稳定传代。LD50试验表明rPrV2的毒力下降。 相似文献
13.
Ishii M Ikushima M Kurachi Y 《Biochemical and biophysical research communications》2005,338(2):839-846
Regulators of G-protein signaling (RGS) are a family of proteins which accelerate intrinsic GTP-hydrolysis on heterotrimeric G-protein-alpha-subunits. Although it has been suggested that the function of RGS4 is reciprocally regulated by competitive binding of the membrane phospholipid, phosphatidylinositol-3,4,5,-trisphosphate(PtdIns(3,4,5)P(3)), and Ca(2+)/calmodulin (CaM), it remains to be shown that these interactions occur in vivo. Here, using fluorescence resonance energy transfer (FRET) techniques, we show that an elevation of intracellular Ca(2+) concentration by ionomycin increased the FRET efficiency from ECFP (a variant of cyan fluorescent protein)-labeled calmodulin to Venus (a variant of yellow fluorescent protein)-labeled RGS4. The increase in FRET efficiency was greatly attenuated by pre-treating the cells with methyl-beta-cyclodextrin, which depletes membrane cholesterol and thus disrupts lipid rafts. These results provide the first demonstration of a Ca(2+)-dependent interaction between RGS4 and CaM in vivo and show that association in lipid rafts of the plasma membrane might be involved in this physiological regulation of RGS proteins. 相似文献
14.
Axin1 is a critical negative regulator of the canonical Wnt-signaling pathway. It is a concentration-limiting factor in the β-catenin degradation complex. Axin1 null mutant mouse embryos died at embryonic day 9.5, precluding direct genetic analysis of the roles of Axin1 in many developmental and physiological processes using these mutant mice. In this study, we have generated mice carrying two directly repeated loxP sites flanking the exon 2 region of the Axin1 gene. We show that floxed-allele-carrying mice (Axin1( fx/fx) ) mice appear normal and fertile. Upon crossing the Axin1( fx/fx) mice to the CMV-Cre transgenic mice, the loxP-flanked exon 2 region that encodes the N-terminus and the conserved regulation of G-protein signaling domain was efficiently deleted by Cre-mediated excision in vivo. Moreover, we show that mouse embryos homozygous for the Cre/loxP-mediated deletion of exon 2 of the Axin1 gene display embryonic lethality and developmental defects similar to those reported for Axin1(-/-) mice. Thus, this Axin1(fx/fx) mouse model will be valuable for systematic tissue-specific dissection of the roles of Axin1 in embryonic and postnatal development and diseases. 相似文献
15.
16.
RNA interference (RNAi) has emerged as an efficient approach for rapid analysis of gene function. In mammalian cells, vector-based expression of small hairpin RNAs (shRNA) produces potent and stable gene knockdown effects. An inducible RNAi system with reproducible levels of siRNA expression will extend the usefulness of this methodology to the identification of gene functions within the developing or adult mouse. We present evidence that an RNA polymerase III-driven U6 promoter with stuffer sequences flanked by loxP sites inserted at three different sites within the promoter drives shRNA expression in a Cre recombinase-dependent manner. We utilized this approach to develop a generic strategy for the reproducible knockdown of gene expression in mice. By placing the inducible shRNA cassette into the ROSA26 locus of the mouse, we were able to generate reproducible levels of controlled expression of shRNA to produce discernable phenotypes in vitro and in vivo. This approach circumvents the prescreening of random integration in embryonic stem cell clones and further enables conditional gene knockdown with temporal and/or tissue specificity. This methodology should expedite large-scale functional studies. 相似文献
17.
Hébert JM Hayhurst M Marks ME Kulessa H Hogan BL McConnell SK 《Genesis (New York, N.Y. : 2000)》2003,35(4):214-219
The embryonic telencephalon is patterned into several areas that give rise to functionally distinct structures in the adult forebrain. Previous studies have shown that BMP4 and BMP2 can induce features characteristic of the telencephalic midline in cultured explants, suggesting that the normal role of BMP4 in the forebrain is to pattern the medial lateral axis of the telencephalon by promoting midline cell fates. To test this hypothesis directly in vivo, the Bmp4 gene was efficiently disrupted in the telencephalon using a CRE/loxP approach. Analysis of Bmp4-deficient telencephalons fails to reveal a defect in patterning, cell proliferation, differentiation, or apoptosis. The absence of a phenotype in the Bmp4-deficient telencephalon along with recent genetic studies establishing a role for a BMP4 receptor, BMPRIA, in telencephalic midline development, demonstrate that loss of Bmp4 function in the telencephalon can be compensated for by at least one other Bmp gene, the identity of which has not yet been determined. 相似文献
18.
Yabe D Fukuda H Aoki M Yamada S Takebayashi S Shinkura R Yamamoto N Honjo T 《Genesis (New York, N.Y. : 2000)》2007,45(5):300-306
19.
A conditional allele of Rspo3 reveals redundant function of R‐spondins during mouse limb development
Stanley Neufeld Jessica M. Rosin Anshula Ambasta Kristen Hui Venessa Shaneman Ray Crowder Lori Vickerman John Cobb 《Genesis (New York, N.Y. : 2000)》2012,50(10):741-749
Summary: R‐spondins are secreted ligands that bind cell surface receptors and activate Wnt/β‐catenin signaling. Human mutations and gene inactivation studies in mice have revealed a role for these four proteins (RSPO1‐4) in diverse developmental processes ranging from sex determination to limb development. Among the genes coding for R‐spondins, only inactivation of Rspo3 shows early embryonic lethality (E10.5 in mice). Therefore, a conditional allele of this gene is necessary to understand the function of R‐spondins throughout murine development. To address this need, we have produced an allele in which loxP sites flank exons 2–4 of Rspo3, allowing tissue‐specific deletion of these exons in the presence of Cre recombinase. We used these mice to investigate the role of Rspo3 during limb development and found that limbs ultimately developed normally in the absence of Rspo3 function. However, severe hindlimb truncations resulted when Rspo3 and Rspo2 mutations were combined, demonstrating redundant function of these genes. genesis 50:741–749, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
20.
Antonia Sassmann Stefan Offermanns Nina Wettschureck 《Genesis (New York, N.Y. : 2000)》2010,48(10):618-625
To generate a mouse line which allows inducible, Cre/loxP‐dependent recombination in adipocytes, we used RedE/RedT‐mediated recombineering to insert the CreERT2‐transgene, which encodes a fusion protein of Cre and a mutated tamoxifen‐responsive estrogen receptor, into the start codon of the adipocyte‐specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreERT2 mouse line (97%–99%), while no recombination was seen in vehicle‐treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreERT2 in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreERT2 mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue. genesis 48:618–625, 2010. © 2010 Wiley‐Liss, Inc. 相似文献