首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selvaraj S  Sambandam V  Sardar D  Anishetty S 《Gene》2012,506(1):233-241
One of the challenges faced by Mycobacterium tuberculosis (M. tuberculosis) in dormancy is hypoxia. DosR/DevR of M. tuberculosis is a two component dormancy survival response regulator which induces the expression of 48 genes. In this study, we have used DosR regulon proteins of M. tuberculosis H37Rv as the query set and performed a comprehensive homology search against the non-redundant database. Homologs were found in environmental mycobacteria, environmental bacteria and archaebacteria. Analysis of genomic context of DosR regulon revealed that they are distributed as nine blocks in the genome of M. tuberculosis with many transposases and integrases in their vicinity. Further, we classified DosR regulon proteins into eight functional categories. One of the hypothetical proteins Rv1998c could probably be a methylisocitrate lyase or a phosphonomutase. Another hypothetical protein, Rv0572 was found only in mycobacteria. Insights gained in this study can potentially aid in the development of novel therapeutic interventions.  相似文献   

2.
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a 'dormancy associated translation inhibitor' or DATIN.  相似文献   

3.
4.
5.
6.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease worldwide. Over the course of its life cycle in vivo, Mtb is exposed to a plethora of environmental stress conditions. Temporal regulation of genes involved in sensing and responding to such conditions is therefore crucial for Mtb to establish an infection. The Rv2745c (clgR) gene encodes a Clp protease gene regulator that is induced in response to a variety of stress conditions and potentially plays a role in Mtb pathogenesis. Our isogenic mutant, Mtb:ΔRv2745c, is significantly more sensitive to in vitro redox stress generated by diamide, relative to wild-type Mtb as well as to a complemented strain. Together with the fact that the expression of Rv2745c is strongly induced in response to redox stress, these results strongly implicate a role for ClgR in the management of intraphagosomal redox stress. Additionally, we observed that redox stress led to the dysregulation of the expression of the σHE regulon in the isogenic mutant, Mtb:ΔRv2745c. Furthermore, induction of clgR in Mtb and Mtb:ΔRv2745c (comp) did not lead to Clp protease induction, indicating that clgR has additional functions that need to be elucidated. Our data, when taken together with that obtained by other groups, indicates that ClgR plays diverse roles in multiple regulatory networks in response to different stress conditions. In addition to redox stress, the expression of Rv2745c correlates with the expression of genes involved in sulfate assimilation as well as in response to hypoxia and reaeration. Clearly, the Mtb Rv2745c-encoded ClgR performs different functions during stress response and is important for the pathogenicity of Mtb in-vivo, regardless of its induction of the Clp proteolytic pathway.  相似文献   

7.
8.
9.

Background

Novel therapeutics are urgently needed to control tuberculosis (TB). Thioridazine (THZ) is a candidate for the therapy of multidrug and extensively drug-resistant TB.

Methodology/Principal Findings

We studied the impact of THZ on Mycobacterium tuberculosis (Mtb) by analyzing gene expression profiles after treatment at the minimal inhibitory (1x MIC) or highly inhibitory (4x MIC) concentrations between 1–6 hours. THZ modulated the expression of genes encoding membrane proteins, efflux pumps, oxido-reductases and enzymes involved in fatty acid metabolism and aerobic respiration. The Rv3160c-Rv3161c operon, a multi-drug transporter and the Rv3614c/3615c/3616c regulon, were highly induced in response to THZ. A significantly high number of Mtb genes co-expressed with σB (the σB regulon) was turned on by THZ treatment. σB has recently been shown to protect Mtb from envelope-damage. We hypothesized that THZ damages the Mtb cell-envelope, turning on the expression of the σB regulon. Consistent with this hypothesis, we present electron-microscopy data which shows that THZ modulates cell-envelope integrity. Moreover, the Mtb mutants in σH and σE, two alternate stress response sigma factors that induce the expression of σB, exhibited higher sensitivity to THZ, indicating that the presence and expression of σB allows Mtb to resist the impact of THZ. Conditional induction of σB levels increased the survival of Mtb in the presence of THZ.

Conclusions/Significance

THZ targets different pathways and can thus be used as a multi-target inhibitor itself as well as provide strategies for multi-target drug development for combination chemotherapy. Our results show that the Mtb sigma factor network comprising of σH, σE and σB plays a crucial role in protecting the pathogen against cell-envelope damage.  相似文献   

10.
The dormancy (DosR) regulon of Mycobacterium tuberculosis is expressed in vitro during hypoxia and low-dose nitric oxide stimulation. Tubercle bacilli are thought to encounter these conditions in humans during latent infection. In this study, immune responses were evaluated to 25 most strongly induced DosR-regulon-encoded proteins, referred to as latency antigens. Proliferation assays were performed using M. tuberculosis-specific T-cell lines and peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients, tuberculin skin test positive (TST+) individuals and uninfected controls. All 25 latency antigens were able to induce production of interferon-gamma (IFN-gamma) by T-cell lines. Eighteen latency antigens were also recognized by PBMC of M. tuberculosis-infected individuals, which indicates expression of the DosR-regulon during natural infection. Differential analysis showed that TST+ individuals recognized more latency antigens and with a stronger cumulative IFN-gamma response than TB patients, while the opposite profile was found for culture filtrate protein-10. In particular Rv1733c, Rv2029c, Rv2627c and Rv2628 induced strong IFN-gamma responses in TST+ individuals, with 61%, 61%, 52% and 35% responders, respectively. In conclusion, several new M. tuberculosis antigens were identified within the DosR-regulon. Particularly strong IFN-gamma responses to latency antigens were observed in latently infected individuals, suggesting that immune responses against these antigens may contribute to controlling latent M. tuberculosis infection.  相似文献   

11.
Novel vaccines are needed to control tuberculosis (TB), the bacterial infectious disease that together with malaria and HIV is worldwide responsible for high levels of morbidity and mortality. TB can result from the reactivation of an initially controlled latent infection by Mycobacterium tuberculosis (Mtb). Mtb proteins for which a possible role in this reactivation process has been hypothesized are the five homologs of the resuscitation-promoting factor of Micrococcus luteus, namely Mtb Rv0867c (rpfA), Rv1009 (rpfB), Rv1884c (rpfC), Rv2389c (rpfD) and Rv2450c (rpfE). Analysis of the immune recognition of these 5 proteins following Mtb infection or Mycobacterium bovis BCG vaccination of mice showed that Rv1009 (rpfB) and Rv2389c (rpfD) are the most antigenic in the tested models. We therefore selected rpfB and rpfD for testing their vaccine potential as plasmid DNA vaccines. Elevated cellular immune responses and modest but significant protection against intra-tracheal Mtb challenge were induced by immunization with the rpfB encoding DNA vaccine. The results indicate that rpfB is the most promising candidate of the five rpf-like proteins of Mtb in terms of its immunogenicity and protective efficacy and warrants further analysis for inclusion as an antigen in novel TB vaccines.  相似文献   

12.
13.
Mycobacterium tuberculosis (Mtb) causes latent tuberculosis infection in one‐third of the world population and remains quiescent in the human body for decades. The dormant pathogen accumulates lipid droplets containing triacylglycerol (TAG). In mammals, perilipin regulates lipid droplet homeostasis but no such protein has been identified in Mtb. We identified an Mtb protein (PPE15) that showed weak amino acid sequence identities with mammalian perilipin‐1 and was upregulated in Mtb dormancy. We generated a ppe15 gene‐disrupted mutant of Mtb and examined its ability to metabolically incorporate radiolabeled oleic acid into TAG, accumulate lipid droplets containing TAG and develop phenotypic tolerance to rifampicin in two in vitro models of dormancy including a three‐dimensional human granuloma model. The mutant showed a significant decrease in the biosynthesis and accumulation of lipid droplets containing TAG and in its tolerance of rifampicin. Complementation of the mutant with a wild‐type copy of the ppe15 gene restored the lost phenotypes. We designate PPE15 as mycobacterial perilipin‐1 (MPER1). Our findings suggest that the MPER1 protein plays a critical role in the homeostasis of TAG ‐containing lipid droplets in Mtb and influences the entry of the pathogen into a dormant state.  相似文献   

14.
15.
Mycobacterium tuberculosis survives in latently infected individuals, likely in a nonreplicating or dormancy-like state. The M. tuberculosis DosR regulon is a genetic program induced by conditions that inhibit aerobic respiration and prevent bacillus replication. In this study, we used a mutant incapable of DosR regulon induction to investigate the contribution of this regulon to bacterial metabolism during anaerobic dormancy. Our results confirm that the DosR regulon is essential for M. tuberculosis survival during anaerobic dormancy and demonstrate that it is required for metabolic processes that occur upon entry into and throughout the dormant state. Specifically, we showed that regulon mechanisms shift metabolism away from aerobic respiration in the face of dwindling oxygen availability and are required for maintaining energy levels and redox balance as the culture becomes anaerobic. We also demonstrated that the DosR regulon is crucial for rapid resumption of growth once M. tuberculosis exits an anaerobic or nitric oxide-induced nonrespiring state. In summary, the DosR regulon encodes novel metabolic mechanisms essential for M. tuberculosis to survive in the absence of respiration and to successfully transition rapidly between respiring and nonrespiring conditions without loss of viability.Mycobacterium tuberculosis, a major human pathogen, infects nearly one-third of the people in the world and causes two million deaths per year (8). Most infections are latent, and a substantial number of new infections are transmitted by individuals in whom latent infections are being reactivated. Latency is a clinical term describing people that are infected with M. tuberculosis but lack symptoms of active disease. Traditionally, it has been thought that bacilli in latently infected individuals reside almost exclusively inside granulomas and mature tubercle lesions. Recent studies indicate that in latently infected individuals M. tuberculosis may also be found outside granulomas in places such as endothelial cells, fibroblasts, and adipose tissue (17, 28). The evidence for M. tuberculosis metabolic activity in vivo is more limited, but two studies by Lillebaek et al. are informative (24, 25). In these studies the researchers used detailed records of tuberculosis epidemiology and strain types in the fairly static population of Denmark. They found that strains isolated from patients thought to have reactivated disease (rather than a primary infection) were nearly identical to strains present 30 years earlier in the same geographic population. The near-identity of the strains and the fact that infections were attributed to reactivation suggest that bacteria in latently infected individuals experience little genetic change during years of latent infection. The researchers concluded that during latency, M. tuberculosis divides infrequently and is likely in a minimal metabolic state.One approach to study the M. tuberculosis metabolic state during latent infection is to use in vitro models that mimic conditions thought to exist in vivo. Such conditions include hypoxia produced in avascular calcified granulomas (40) and nitric oxide (NO) (27) or carbon monoxide (CO) (33) produced by activated immune cells. A widely used model is the “Wayne model” pioneered by Lawrence Wayne. In this model, a low-inoculum culture is sealed in a tube with stirring and allowed to slowly consume oxygen until the culture is anaerobic, resulting in a nonreplicating and apparently dormant state (45, 46). Another model used to look at dormant M. tuberculosis is a constant-hypoxia model that maintains a 0.2% oxygen tension in culture flasks (31).The common theme in these in vitro models used to obtain M. tuberculosis dormancy is inhibition of respiration. The DosR regulon is a set of at least 48 coregulated genes that are induced by three conditions that inhibit aerobic respiration: hypoxia, NO, and CO (42). Induction of the DosR regulon closely mirrors inhibition of respiration, indicating that control of the regulon is linked to the aerobic respiratory state of the bacilli (43). Several studies have shown that the DosR regulon is controlled by a three-component regulatory system composed of two sensor histidine kinases, DosS and DosT, and a response regulator, DosR (42). DosS and DosT both bind the respiration-impairing gases NO and CO (19, 20, 38), further supporting the hypothesis that the DosR regulon responds to, and is important during, conditions that do not allow aerobic respiration. Although the majority of the DosR-regulated genes have not been characterized, the timing of their induction combined with the conditions under which they respond suggests that they may play a role in adaptation of M. tuberculosis to its host environment. Consistent with this notion, DosR regulon genes are induced in the lungs of M. tuberculosis-infected mice (43), as well as in interferon-gamma-activated murine macrophages (34) and guinea pigs (37).Several studies have suggested that the DosR regulon plays a role in latent infection and in persistence in animal models that resemble human infection in some respects. Leyten et al. found that latently infected humans are more likely than humans with active infections to bear T cells specific for DosR regulon antigens (23), suggesting that the regulon is expressed during latency. Two recent studies confirmed that there is an immune response to DosR regulon antigens during latent infection (4, 36). Further evidence for clinical relevance in humans comes from a study showing that M. tuberculosis in sputum expresses the DosR regulon (15). The importance of this regulon for persistence in rabbit and guinea pig models was demonstrated by data showing a 2-log decrease in recovery of a DosR mutant 2 weeks (guinea pig) and 8 weeks (rabbit) after aerosol infection (11). A DosR mutant was also found to be significantly attenuated in guinea pig infection (26), further supporting the notion that the DosR regulon is required for persistence in vivo. It should be noted that in both studies showing the DosR phenotype (11, 26), full complementation and reversion to full virulence were not observed. However, it is now known that regulation of dosR expression is quite complex. Multiple regulatory sequences exist in and upstream of Rv3134c, the gene directly upstream of dosR (8). Failure to include such a regulatory sequence in a complemented strain would likely result in misregulation of dosR and poor complementation. Studies of DosR regulon mutants for murine infection have produced inconsistent findings that vary from hypervirulent (30) to attenuated (11) and not attenuated (3, 31). When animal models are compared, it is important to remember that M. tuberculosis-induced granulomas in primates, rabbits, and guinea pigs develop caseous necrosis and are hypoxic and/or anaerobic, while M. tuberculosis induced-granulomas in mice are neither hypoxic nor anaerobic (2, 21, 41). Furthermore, M. tuberculosis divides regularly in chronic murine infections (16), in contrast to the replication during latent infections, as demonstrated in the studies of Lillebaek et al. (24, 25). Such studies underscore the significant differences between models.A previous study with a DosR mutant in a closely related Mycobacterium bovis BCG strain showed that DosR expression is required for survival in an in vitro Wayne-like model of dormancy (5). Unexpectedly, two similar studies in M. tuberculosis did not show a strong survival defect for a DosR mutant (31, 43). The most recent study showed that there was only a modest survival defect in an H37Rv DosR mutant and concluded that the DosR regulon is a short-term phenomenon and is not responsible for the adaptation necessary to survive under primarily hypoxic conditions in vitro (31, 32).In this study we showed that the DosR regulon is required for M. tuberculosis survival during anaerobic dormancy. We also used a combination of genetic and biochemical approaches to demonstrate that this regulon is necessary to shift away from oxygen consumption, maintain ATP levels, and balance the redox state (NAD/NADH ratio) of the cell as oxygen becomes scarce. Furthermore, we showed that the DosR regulon is necessary for optimal transition of M. tuberculosis back to aerobic growth from an anaerobic or nitric oxide-induced nonrespiring state.  相似文献   

16.
17.
It is thought that during latent infection, Mycobacterium tuberculosis bacilli are retained within granulomas in a low-oxygen environment. The dormancy survival (Dos) regulon, regulated by the response regulator DosR, appears to be essential for hypoxic survival in M. tuberculosis, but it is not known how the regulon promotes survival. Here we report that mycobacteria, in contrast to enteric bacteria, do not form higher-order structures (e.g. ribosomal dimers) upon entry into stasis. Instead, ribosomes are stabilized in the associated form (70S). Using a strategy incorporating microfluidic, proteomic, and ribosomal profiling techniques to elucidate the fate of mycobacterial ribosomes during hypoxic stasis, we show that the dormancy regulator DosR is required for optimal ribosome stabilization. We present evidence that the majority of this effect is mediated by the DosR-regulated protein MSMEG_3935 (a S30AE domain protein), which is associated with the ribosome under hypoxic conditions. A Δ3935 mutant phenocopies the ΔdosR mutant during hypoxia, and complementation of ΔdosR with the MSMEG_3935 gene leads to complete recovery of dosR mutant phenotypes during hypoxia. We suggest that this protein is named ribosome-associated factor under hypoxia (RafH) and that it is the major factor responsible for DosR-mediated hypoxic survival in mycobacteria.  相似文献   

18.
The genome of the human pathogen Mycobacterium tuberculosis (Mtb) encodes ~4,400 proteins, but one third of them have unknown functions. We solved the crystal structure of Rv3651, a hypothetical protein with no discernible similarity to proteins with known function. Rv3651 has a three‐domain architecture that combines one cG MP‐specific phosphodiesterases, a denylyl cyclases and F hlA (GAF) domain and two P er‐A RNT‐S im (PAS) domains. GAF and PAS domains are sensor domains that are typically linked to signaling effector molecules. Unlike these sensor‐effector proteins, Rv3651 is an unusual sensor domain‐only protein with highly divergent sequence. The structure suggests that Rv3651 integrates multiple different signals and serves as a scaffold to facilitate signal transfer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号