首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Our goals are: (1) to examine the relative degree of phylogenetic overdispersion or clustering of species in communities relative to the entire species pool, (2) to test for across‐continent differences in community phylogenetic structure, and (3) to examine the relationship between species richness and community phylogenetic structure. Location Africa, Madagascar, Asia, and the Neotropics. Methods We collected species composition and phylogenetic data for over 100 primate communities. For each community, we calculated two measures of phylogenetic structure: (1) the net relatedness index (NRI), which provides a measure of the mean pairwise phylogenetic distance among all species in the community; and (2) the nearest taxon index (NTI), which measures the relative phylogenetic distance among the closest related species in a community. Both measures are relative to the phylogeny of the species in the entire species pool. The phylocom package uses a randomization procedure to test whether the NRI and NTI values are higher or lower than expected by chance alone. In addition, we used a Kruskal–Wallis test to examine differences in NRI and NTI across continents, and linear regressions to examine the relationship between species richness and NRI/NTI. Results We found that the majority of individual primate communities in Africa, Asia and the Neotropics consist of member species that are neither more nor less closely related than expected by chance alone. Yet 37% of Malagasy communities contain species that are more distantly related to each other compared with random species assemblages. Also, we found that the average degree of relatedness among species in communities differed significantly across continents, with African and Malagasy communities consisting of more distantly related taxa compared with communities in Asia and the Neotropics. Finally, we found a significant negative relationship between species richness and phylogenetic distance among species in African, Asian and Malagasy communities. The average relatedness among species in communities decreased as community size increased. Main conclusions The majority of individual primate communities exhibit a phylogenetic structure no different from random. Yet there are across‐continent differences in the phylogenetic structure of primate communities that probably result from the unique ecological and evolutionary characteristics exhibited by the endemic species found on each continent. In particular, the recent extinctions of numerous primates on Madagascar are likely responsible for the low levels of evolutionary relatedness among species in Malagasy communities.  相似文献   

2.
Previous research has shown that both environmental and historical factors influence the taxonomic structure of animal communities; yet, the relative importance of these effects is not known for primates. Environmental characteristics shape the possible niches in a community, providing suitable habitats for some species and not others. Therefore, communities found in similar environments should display similar species compositions. Additionally, geography may be viewed as a surrogate for historical processes. For instance, as the geographic distance between communities increases, dispersal between sites is more limited, and the probability of historical vicariance increases. Therefore, communities in close proximity to each other should exhibit similar species compositions. The geographic location, environmental characteristics, and species composition of 168 primate communities were gathered from the literature. Canonical correspondence analyses were conducted to examine the relative effects of geographic distance and environmental variables on the taxonomic structure of communities. In addition, UPGMA cluster analyses were conducted to better visualize the taxonomic similarity of communities. Spatial variables were significant predictors of community structure in all regions. Rainfall patterns explained African, Malagasy, and Neotropical community structure. In addition, maximum temperature was also correlated with community structure in Madagascar and the Neotropics. No climatic variables predicted Asian community structure. These results demonstrate that both historical and environmental factors play a significant role in structuring modern primate communities; yet, the importance of environmental factors depend on the region in question. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Oceanic islands are renowned for the profound scientific insights that their fascinating biotas have provided to biologists during the past two centuries. Research presented at Island Biology 2014—an international conference, held in Honolulu, Hawaii (7–11 July 2014), which attracted 253 presenters and 430 participants from at least 35 countries1—demonstrated that islands are reclaiming a leading role in ecology and evolution, especially for synthetic studies at the intersections of macroecology, evolution, community ecology and applied ecology. New dynamics in island biology are stimulated by four major developments. We are experiencing the emergence of a truly global and comprehensive island research community incorporating previously neglected islands and taxa. Macroecology and big-data analyses yield a wealth of global-scale synthetic studies and detailed multi-island comparisons, while other modern research approaches such as genomics, phylogenetic and functional ecology, and palaeoecology, are also dispersing to islands. And, increasingly tight collaborations between basic research and conservation management make islands places where new conservation solutions for the twenty-first century are being tested. Islands are home to a disproportionate share of the world''s rare (and extinct) species, and there is an urgent need to develop increasingly collaborative and innovative research to address their conservation requirements.  相似文献   

4.
A central prediction of niche theory is that biotic communities are structured by niche differentiation arising from competition. To date, there have been numerous studies of niche differentiation in local ant communities, but little attention has been given to the macroecology of niche differentiation, including the extent to which particular biomes show distinctive patterns of niche structure across their global ranges. We investigated patterns of niche differentiation and competition in ant communities in tropical rainforests, using different baits reflecting the natural food spectrum. We examined the extent of temporal and dietary niche differentiation and spatial segregation of ant communities at five rainforest sites in the neotropics, paleotropics, and tropical Australia. Despite high niche overlap, we found significant dietary and temporal niche differentiation in every site. However, there was no spatial segregation among foraging ants at the community level, despite strong competition for preferred food resources. Although sucrose, melezitose, and dead insects attracted most ants, some species preferentially foraged on seeds, living insects, or bird feces. Moreover, most sites harbored more diurnal than nocturnal species. Overall niche differentiation was strongest in the least diverse site, possibly due to its lower number of rare species. Both temporal and dietary differentiation thus had strong effects on the ant assemblages, but their relative importance varied markedly among sites. Our analyses show that patterns of niche differentiation in ant communities are highly idiosyncratic even within a biome, such that a mechanistic understanding of the drivers of niche structure in ant communities remains elusive.  相似文献   

5.
The current state of research in the field of paleobotany is reviewed, with emphasis on those areas that deal with more biological approaches to paleobotany. These would include such subjects as the reproductive biology of fossil plants, pollination biology in selected groups, paleobiochemistry, and information on the interaction of plants with other organisms (plant/animal interactions) and their environment (paleoecology). Also discussed are some of the more recent contributions to our understanding of Precambrian paleobiology and early angiosperm reproduction and evolution. Finally, we offer some speculation on the contributions that various areas of paleobotany may provide in the future.  相似文献   

6.
7.
  1. The role of interspecific interactions in structuring low‐diversity helminth communities is a controversial topic in parasite ecology research. Most parasitic communities of fish are species‐poor; thus, interspecific interactions are believed to be unimportant in structuring these communities.
  2. We explored the factors that might contribute to the richness and coexistence of helminth parasites of a poeciliid fish in a neotropical river.
  3. Repeatability of community structure was examined in parasitic communities among 11 populations of twospot livebearer Pseudoxiphophorus bimaculatus in the La Antigua River basin, Veracruz, Mexico. We examined the species saturation of parasitic communities and explored the patterns of species co‐occurrence. We also quantified the associations between parasitic species pairs and analyzed the correlations between helminth species abundance to look for repeated patterns among the study populations.
  4. Our results suggest that interspecific competition could occur in species‐poor communities, aggregation plays a role in determining local richness, and intraspecific aggregation allows the coexistence of species by reducing the overall intensity of interspecific competition.
  相似文献   

8.
Marine biogeography and ecology: invasions and introductions   总被引:1,自引:0,他引:1  
Although biogeography and ecology had previously been considered distinct disciplines, this outlook began to change in the early 1990s. Several people expressed interest in creating a link that would help ecologists become more aware of external influences on communities and help biogeographers realize that distribution patterns had their genesis at the community level. They proposed an interdisciplinary approach called macroecology. This concept has been aided by the advent of phylogeography, for a better knowledge of genetic relationships has had great interdisciplinary value. Two areas of research that should obviously benefit from a macroecological approach are: (1) the question of local vs. regional diversity and (2) the question of whether invader species pose a threat to biodiversity. The two questions are related, because both deal with the vulnerability of ecosystems to penetration by invading species. Biogeographers, who have studied the broad oceanic patterns of dispersal and colonization, tend to regard isolated communities as being open to invasion from areas with greater biodiversity. It became evident that many wide‐ranging species were produced in centres of origin, and that the location of communities with respect to such centres had a direct effect on the level of species diversity. Ecologists, in earlier years, thought that a community could become saturated with species and would thereafter be self‐sustaining. But recent research has shown that saturation is probably never achieved and that the assembly of communities and their maintenance is more or less dependent on the invasion of species from elsewhere. The study of invasions that take place in coastal areas, usually the result of ship traffic and/or aquaculture imports, has special importance due to numerous opinions expressed by scientists and policy‐makers that such invasions are a major threat to biodiversity. However, none of the studies so far conducted has identified the extinction of a single, native marine species due to the influence of an exotic invader. Furthermore, fossil evidence of historical invasions does not indicate that invasive species have caused native extinctions or reductions in biodiversity.  相似文献   

9.
Gross K 《Ecology letters》2008,11(9):929-936
Although positive interactions between species are well documented, most ecological theory for investigating multispecies coexistence remains rooted in antagonistic interactions such as competition and predation. Standard resource-competition models from this theory predict that the number of coexisting species should not exceed the number of factors that limit population growth. Here I show that positive interactions among resource competitors can produce species-rich model communities supported by a single limiting resource. Simulations show that when resource competitors reduce each others' per capita mortality rate (e.g. by ameliorating an abiotic stress), stable multispecies coexistence with a single resource may be common, even while the net interspecific interaction remains negative. These results demonstrate that positive interactions may provide an important mechanism for generating species-rich communities in nature. They also show that focusing on the net interaction between species may conceal important coexistence mechanisms when species simultaneously engage in both antagonistic and positive interactions.  相似文献   

10.
11.
Although there have been many studies of the ecology of primates in communities throughout the world, there have been few attempts to compare community ecology within and among continents. In this study the ecological characteristics of the sympatric primate species at eight localities—two from each of the major biogeographic areas inhabited by primates today—South America, Africa, Madagascar, and Asia—were compared using a multivariate technique (principal components analysis of the correlation matrix) to summarize the ten dimensional ecological niche space. The most striking clustering of species in ecological multivariate space is according to phylogeny with closely related species showing similar ecological features. Likewise, the ecological characteristics of individual communities are determined by phylogenetic groups present at each locality or biogeographic region. As a result, communities within any biogeographical region are more similar ecologically to one another than to communities from other continental areas. In several measures of ecological diversity among the species comprising each community, the neotropical communities show lower overall diversity than do communities from other continents.  相似文献   

12.
Aim The evolutionary processes structuring the composition of communities remain unclear due to the complexity of factors active at various spatial and temporal scales. Here, we conducted ecological and evolutionary analyses of communities of caddisflies in the genus Hydropsyche (Insecta: Trichoptera) composed of ecomorphologically differentiated species. Location River ecosystems in the Iberian Peninsula and northern Morocco. Methods Nineteen environmental variables were assessed at 180 local study sites and species presence/absence at these sites was used to determine their ecological niche. The evolutionary framework for all 19 species of Hydropsyche encountered was generated by phylogenetic analysis of the mitochondrial cytochrome c oxidase subunit I gene and three nuclear genes: wingless, elongation factor 1‐alpha and 28S RNA. The phylogenetic tree was used: (1) to assess evolutionary niche conservatism by ecological trait correlation with the tree; and (2) to analyse the phylogenetic relatedness of community member species, at three spatial scales (local stream reaches, drainage basins, biogeographical regions). Results Ecological measurements grouped most species into either headwater, mid‐stream or lowland specialists, and traits presumably relevant to river zonation were found to be phylogenetically conservative. Species assemblages at local stream reaches were mostly mono‐ or dispecific. Species diversity increased at larger spatial scales, by adding species with non‐overlapping ecological niches at the level of river basins and by turnover of anciently differentiated lineages at the level of biogeographical regions. This indicates the effects of competition and niche filtering on community structure locally, and ancient ecological diversification and allopatric speciation, respectively, in building up the species pool at basin and biogeographical scales. Main conclusions The study demonstrates the importance of scale (grain size) in studying what determines community composition. Current ecological factors (i.e. competitive exclusion) in Hydropsyche were evident only when studying narrow local sites, while studies of assemblages at larger spatial scales instead demonstrated the roles of ecological niche differentiation, phylogenetic history of trait diversification and allopatric speciation. Increasing the grain size of investigation reveals different portions of correlated spatial and evolutionary processes.  相似文献   

13.

Aims

Colonization by non-native ants represents one of the gravest potential threats to island ecosystems. It is necessary to identify general mechanisms by which non-native species are able to colonize and persist in order to inform future prevention and management. We studied a model-island assemblage of 17 non-native ant species with aim of identifying the spatial source of introductions and assessing how such a diversity of species are able to coexist.

Location

Data were collected on Ascension Island: an ideal study system for its intermediate area, compact shape, spatial heterogeneity, lack of native ant species, and availability of non-native ant records dating back to the 1800s.

Methods

We collected over 47,000 individual ants from 73 sites using a range of baited traps and survey techniques. We combined this novel data with past occurrence records in order to determine whether human settlements have historically been the source of ant introductions and to quantify the mean rate at which species have dispersed across the island. Analysis of standardized field data revealed the extent to which ants were partitioning ecological niche space via (1) habitat separation, (2) fine-scale resource partitioning and (3) climatic heterogeneity.

Results

Ants were radiating at a linear rate of approximately 0.5 km2 per year from human settlements on this island, with the most widespread species having been introduced earliest. After accounting for incomplete colonization, we found no evidence to suggest habitat separation between species. Instead, we found significant niche separation through resource partitioning and weather-dependent activity patterns.

Main Conclusions

Our results indicate that non-native ants can coexist in very close proximity and are therefore capable of existing at great diversity on even small islands. It is inevitable that ant colonization will continue without increased biosecurity measures, habitat restoration around settlements and conservation of native species populations.  相似文献   

14.
生态群落物种共存的进化机制   总被引:14,自引:0,他引:14  
本文概述了目前对生态群落的物种共存研究中存在的若干问题及动、植物群落物种共存机制的研究进展。植物群落的物种共存主要介绍与环境、种子再迁移、生态位分化、竞争平衡理论、种库假设、再生生态位等有关的几种假设、生态学上相似种的共存及“原”群落概念等。动物群落的物种共存机制主要从以下几方面叙述:(1)异质环境中的资源分割,主要指动物斑状滋养的不同利用;(2)避免竞争排斥的行为机制,如边缘效应、聚群效应、扩散行为、相互作用和干扰;(3)特化者和泛化者的共存,包括:竞争是物种向多功能进化的作用力、最佳觅食理论与生态学特化及特化概念的发展。最后指出进一步研究的方向。  相似文献   

15.
During their 120 to 165 million years of isolation, the flora and fauna of Madagascar evolved, to a large extent, independently of the African mainland.1 In contrast to other oceanic islands, Madagascar is large enough to house the major components of tropical ecosystems, allowing tests of evolutionary hypotheses on the level of complete communities. Taking lemurs, the primates of Madagascar, as an example, evolutionary hypotheses correctly predict the organization of their community structure with respect to ecological correlates. Lemur social systems and their morphological correlates, on the other hand, deviate in some respects from those of other primates. Apparently, lemur social systems are influenced by several selection pressures that are weak or rare in other primates. These include variable activity patterns and avoidance of infanticide. The interspecific variation in lemur social systems therefore offers a unique opportunity for a comprehensive study of the determinants of primate social systems.  相似文献   

16.
The difficulty of integrating multiple theories, data and methods has slowed progress towards making unified inferences of ecological change generalizable across large spatial, temporal and taxonomic scales. However, recent progress towards a theoretical synthesis now provides a guiding framework for organizing and integrating all primary data and methods for spatiotemporal assemblage‐level inference in ecology. In this paper, we describe how recent theoretical developments can provide an organizing paradigm for linking advances in data collection and methodological frameworks across disparate ecological sub‐disciplines and across large spatial and temporal scales. First, we summarize the set of fundamental processes that determine change in multispecies assemblages across spatial and temporal scales by reviewing recent theoretical syntheses of community ecology. Second, we review recent advances in data and methods across the main sub‐disciplines concerned with ecological inference across large spatial, temporal and taxonomic scales, and organize them based on the primary fundamental processes they include, rather than the spatiotemporal scale of their inferences. Finally, we highlight how iteratively focusing on only one fundamental process at a time, but combining all relevant spatiotemporal data and methods, may reduce the conceptual challenges to integration among ecological sub‐disciplines. Moreover, we discuss a number of avenues for decreasing the practical barriers to integration among data and methods. We aim to reconcile the recent convergence of decades of thinking in community ecology and macroecology theory with the rapid progress in spatiotemporal approaches for assemblage‐level inference, at a time where a robust understanding of spatiotemporal change in ecological assemblages is more crucial than ever to conserve biodiversity.  相似文献   

17.
We investigated a mathematical model of the dynamics of the ecological system consisting of two competing perennial species, each of which leads a sedentary life. It is an individual-based model, in which the growth of each individual is described. The rate of this growth is weakened by competition from neighboring individuals. The strength of the competitors' influence depends on their size and distance to them. The conditions, in which the competitive exclusion of one of the competitors and the coexistence of both competitors take place are provided. The influence of the parameters responsible for the strength of competition, the degree of competitive asymmetry, and consideration of the importance of specific elements of the spatial structure of this ecological system on the results of the competition were analyzed. Both species co-exist when they are equal competitors. Permanent coexistence is possible only when interspecific competition is weaker than intraspecific. When interspecific competition is stronger, the coexistence of equal interspecific competitors is random. Both species have equal probability of extinction. If species are not equal competitors, the stronger one wins. This result can be modified by different strengths of intraspecific competition. The weaker interspecific competitor can permanently coexist with stronger one, when its individuals suffer stronger intraspecific competition.  相似文献   

18.
The immediate need to understand the complex responses of grasslands to climate change, to ensure food supplies and to mitigate future climate change through carbon sequestration, necessitate a global, synthesized approach. Numerous manipulative experiments have altered temperature or precipitation, often in conjunction with other interacting factors such as grazing, to understand potential effects of climate change on the ecological integrity of temperate grasslands and understand the mechanisms of change. Although the different ways in which temperature and precipitation may change to effect grasslands were well represented, variability in methodology limited generalizations. Results from these experiments were also largely mixed and complex; thus, a broad understanding of temperate grassland responses to these factors remains elusive. A collaboration based on a set of globally dispersed, inexpensive experiments with consistent methodology would provide the data needed to better understand responses of temperate grassland to climate change.  相似文献   

19.
Understanding the mechanisms maintaining local species richness is a major topic in tropical ecology. In ecological communities of Madagascar, primates represent a major part of mammalian diversity and, thus, are a suitable taxon to study these mechanisms. Previous research suggested that ecological niche differentiation facilitates the coexistence of lemurs. However, detailed data on all species making up diverse local primate assemblages is rarely available, hampering community‐wide tests of niche differentiation among Malagasy mammals. Here, we took an indirect approach and used stable isotopes as long‐term indicators of individuals' diets to answer the question of whether trophic patterns and food‐related mechanisms stabilize coexistence in a species‐rich lemur community. We analyzed stable carbon and nitrogen isotopes in hair collected from eight syntopic lemurs in Kirindy Forest. We found that lemur species were well separated into trophic niches and ranged over two trophic levels. Furthermore, species were densely packed in isotopic space suggesting that past competitive interactions between species are a major structuring force of this dry forest lemur community. Results of other comparative studies on primates and our findings underline that—in contrast to communities worldwide—the structure and composition of lemur communities follow predictions of ecological niche theory. Patterns of competitive interactions might be more clearly revealed in Malagasy primate communities than elsewhere because lemurs represent a large fraction of ecologically interacting species in these communities. The pronounced trophic niche differentiation among lemurs is most likely due to intense competition in the past as is characteristic for adaptive radiations. Am J Phys Anthropol 153:249–259, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号