首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

3.
Despite the improvement in acute myeloid leukemia (AML) treatments, most patients had a poor prognosis and suffered from chemoresistance and disease relapse. Therefore, there is an urgent need for elucidation of mechanism(s) underlying drug resistance in AML. In the present study, we found that AML cells showed less susceptibility to adriamycin (ADR) in the presence of hypoxia, while inhibition of hypoxia‐inducible factor 1α (HIF‐1α) by CdCl2 can make AML cells re‐susceptibile to ADR even under hypoxia. Moreover, HIF‐1α is overexpressed and plays an important role in ADR‐resistance maintenance in resistant AML cells. We further found hypoxia or induction of HIF‐1α can significantly upregulate yes‐associated protein (YAP) expression in AML cells, and resistant cells express a high level of YAP. Finally, we found that YAP may not only enhance HIF‐1α stability but also promote HIF‐1α's activity on the target gene pyruvate kinase M2. In conclusion, our data indicate that HIF‐1α or YAP may represent a therapeutic target for overcoming resistance toward adriamycin‐based chemotherapy in AML.  相似文献   

4.
5.
6.
7.
Hypoxia, which activates the hypoxia inducible factor 1α (HIF‐1α), is an essential feature of retinoblastoma (RB) and contributes to poor prognosis and resistance to conventional therapy. In this study, the effect of HIF‐1α knockdown by small interfering RNA (siRNA) on cell proliferation, apoptosis, and apoptotic pathways of human Y‐79 RB cells was first investigated. Exposure to hypoxia induced the increased expression of HIF‐1α both in mRNA and protein levels. Then, knockdown of HIF‐1α by siRNAHIF‐1α resulted in inhibition of cell proliferation and induced cell apoptosis in human Y‐79 RB cells under both normoxic and hypoxic conditions, with hypoxic conditions being more sensitive. Furthermore, knockdown of HIF‐1α could enhance hypoxia‐induced slight increase of Bax/Bcl‐2 ratio and activate caspase‐9 and caspase‐3. These results together indicated that suppression of HIF‐1α expression may be a promising strategy for the treatment of human RB in the future.  相似文献   

8.
9.
Mesenchymal stem cells (MSCs) have drawn great attention because of their therapeutic potential. It has been suggested that intra‐venous infused MSCs could migrate the site of injury to help repair the damaged tissue. However, the mechanism for MSC migration is still not clear so far. In this study, we reported that hypoxia increased chemotaxis migration of MSCs. At 4 and 6 hours after culturing in hypoxic (1% oxygen) conditions, the number of migrated MSCs was significantly increased. Meanwhile, hypoxia also increased the expression of HIF‐1α and SDF‐1. Using small interference RNA, we knocked down the expression of HIF‐1α in MSCs to study the role of HIF‐1α in hypoxia induced migration. Our data indicated that knocking down the expression of HIF‐1α not only abolished the migration of MSCs, but also reduced the expression of SDF‐1. Combining the results of migration assay and expression at RNA and protein level, we demonstrated a novel mechanism that controls the increase of MSCs migration. This mechanism involved HIF‐1α mediated SDF‐1 expression. These findings provide new insight into the role of HIF‐1α in the hypoxia induced MSC migration and can be a benefit for the development of MSC‐based therapeutics for wound healing.  相似文献   

10.
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre‐treated with QL (0.5 mg/mL) and/or HIF‐1α siRNA were cultured in a three‐gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF‐1α‐dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF‐1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up‐regulating HIF‐1α and a series of glycolysis‐relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6‐phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF‐1α‐dependent manner. Lastly, the results suggested that QL‐dependent enhancement of HIF‐1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF‐1α pathway, and we speculated that QL also improved HIF‐1α stabilization through down‐regulating prolyl hydroxylases 3 (PHD3) expression.  相似文献   

11.
12.
The macrolide compound MFTZ‐1 has been identified as a novel topoisomerase II (Top2) inhibitor with potent in vitro and in vivo anti‐tumour activities. In this study, we further examined the effects of MFTZ‐1 on hypoxia‐inducible factor‐1α (HIF‐1α) accumulation, vascular endothelial growth factor (VEGF) secretion and angiogenesis. MFTZ‐1 reduced HIF‐1α accumulation driven by hypoxia or growth factors in human cancer cells. Mechanistic studies revealed that MFTZ‐1 did not affect the degradation of HIF‐1α protein or the level of HIF‐1α mRNA. By contrast, MFTZ‐1 apparently inhibited constitutive and inducible activation of both phosphatidylinositol‐3‐kinase (PI3K)‐Akt and p42/p44 mitogen‐activated protein kinase (MAPK) pathways. Further studies revealed that MFTZ‐1 abrogated the HIF‐1α‐driven increase in VEGF mRNA and protein secretion. MFTZ‐1 also lowered the basal level of VEGF secretion. The results reveal an important feature that MFTZ‐1 can reduce constitutive, HIF‐1α‐independent VEGF secretion and concurrently antagonize inducible, HIF‐1α‐dependent VEGF secretion. Moreover, MFTZ‐1 disrupted tube formation of human umbilical vein endothelial cells (HUVECs) stimulated by hypoxia with low‐concentration serum or by serum at normoxia, and inhibited HUVECs migration at normoxia. MFTZ‐1 also prevented microvessel outgrowth from rat aortic ring. These data reflect the potent anti‐angiogenesis of MFTZ‐1 under different conditions. Furthermore, using specific small interfering RNA targeting Top2α or Top2‐defective HL60/MX2 cells, we showed that MFTZ‐1 affected HIF‐1α accumulation and HUVECs tube formation irrelevant to its Top2 inhibition. Taken together, our data collectively reveal that MFTZ‐1 reduces constitutive and inducible HIF‐1α accumulation and VEGF secretion possibly via PI3K‐Akt and MAPK pathways, eliciting anti‐angiogenesis independently of its Top2 inhibition.  相似文献   

13.
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.  相似文献   

14.
15.
Intravenous application of high‐dose ascorbate is used in complementary palliative medicine to treat cancer patients. Pharmacological doses of ascorbate in the mM range induce cytotoxicity in cancer cells mediated by reactive oxygen species (ROS), namely hydrogen peroxide and ascorbyl radicals. However, little is known about intrinsic or extrinsic factors modulating this ascorbate‐mediated cytotoxicity. Under normoxia and hypoxia, ascorbate IC50 values were determined on the NCI60 cancer cells. The cell cycle, the influence of cobalt chloride‐induced hypoxia‐inducible factor‐1α (HIF‐1α) and the glucose transporter 1 (GLUT‐1) expression (a pro‐survival HIF‐1α‐downstream‐target) were analysed after ascorbate exposure under normoxic and hypoxic conditions. The amount of ascorbyl radicals increased with rising serum concentrations. Hypoxia (0.1% O2) globally increased the IC50 of ascorbate in the 60 cancer cell lines from 4.5 ± 3.6 mM to 10.1 ± 5.9 mM (2.2‐fold increase, P < 0.001, Mann–Whitney t‐test), thus inducing cellular resistance towards ascorbate. This ascorbate resistance depended on HIF‐1α‐signalling, but did not correlate with cell line‐specific expression of the ascorbate transporter GLUT‐1. However, under normoxic and hypoxic conditions, ascorbate treatment at the individual IC50 reduced the expression of GLUT‐1 in the cancer cells. Our data show a ROS‐induced, HIF‐1α‐ and O2‐dependent cytotoxicity of ascorbate on 60 different cancer cells. This suggests that for clinical application, cancer patients should additionally be oxygenized to increase the cytotoxic efficacy of ascorbate.  相似文献   

16.
17.
Tumor hypoxia was first described in the 1950s by radiation oncologists as a frequent cause of failure to radiotherapy in solid tumors. Today, it is evident that tumor hypoxia is a common feature of many cancers and the master regulator of hypoxia, hypoxia‐inducible factor‐1 (HIF‐1), regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy. Although the tumor hypoxia response mechanism leads to a multitude of downstream effects, it is angiogenesis that is most crucial and also most susceptible to molecular manipulation. The delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF‐1 in the regulation of angiogenic growth factors. In this article, we review what has been described about HIF‐1: its structure, its regulation, and its implication for cancer therapy and we focus on its role in angiogenesis and cancer. J. Cell. Biochem. 114: 967–974, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
Tumour protein p53‐inducible nuclear protein 1 (TP53INP1) is a tumour suppressor associated with malignant tumour metastasis. Vasculogenic mimicry (VM) is a new tumour vascular supply pattern that significantly influences tumour metastasis and contributes to a poor prognosis. However, the molecular mechanism of the relationship between TP53INP1 and breast cancer VM formation is unknown. Here, we explored the underlying mechanism by which TP53INP1 regulates VM formation in vitro and in vivo. High TP53INP1 expression was not only negatively correlated with a poor prognosis but also had a negative relationship with VE‐cadherin, HIF‐1α and Snail expression. TP53INP1 overexpression inhibited breast cancer invasion, migration, epithelial‐mesenchymal transition (EMT) and VM formation; conversely, TP53INP1 down‐regulation promoted these processes in vitro by functional experiments and Western blot analysis. We established a hypoxia model induced by CoCl2 and assessed the effects of TP53INP1 on hypoxia‐induced EMT and VM formation. In addition, we confirmed that a reactive oxygen species (ROS)‐mediated signalling pathway participated in TP53INP1‐mediated VM formation. Together, our results show that TP53INP1 inhibits hypoxia‐induced EMT and VM formation via the ROS/GSK‐3β/Snail pathway in breast cancer, which offers new insights into breast cancer clinical therapy.  相似文献   

20.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号