首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding which environmental variables and traits underlie adaptation to harsh environments is difficult because many traits evolve simultaneously as populations or species diverge. Here, we investigate the ecological variables and traits that underlie Mimulus laciniatus’ adaptation to granite outcrops compared to its sympatric, mesic‐adapted progenitor, Mimulus guttatus. We use fine‐scale measurements of soil moisture and herbivory to examine differences in selective forces between the species’ habitats, and measure selection on flowering time, flower size, plant height, and leaf shape in a reciprocal transplant using M. laciniatus × M. guttatus F4 hybrids. We find that differences in drought and herbivory drive survival differences between habitats, that M. laciniatus and M. guttatus are each better adapted to their native habitat, and differential habitat selection on flowering time, plant stature, and leaf shape. Although early flowering time, small stature, and lobed leaf shape underlie plant fitness in M. laciniatus’ seasonally dry environment, increased plant size is advantageous in a competitive mesic environment replete with herbivores like M. guttatus’. Given that we observed divergent selection between habitats in the direction of species differences, we conclude that adaptation to different microhabitats is an important component of reproductive isolation in this sympatric species pair.  相似文献   

2.
The effect of leaf shape variation on plant-herbivore interactions has primarily been studied from the perspective of host seeking behavior. Yet for leaf shape to affect plant-herbivore coevolution, there must be reciprocal effects of leaf shape variation on herbivore consumption and performance. We investigated whether alternative leaf morphs affected the performance of three generalist insect herbivores by taking advantage of a genetic polymorphism and developmental plasticity in leaf shape in the Ivyleaf morning glory, Ipomoea hederacea. Across four experiments, we found variable support for an effect of leaf shape genotype on insects. For cabbage loopers (Trichoplusia ni) and corn earworms (Helicoverpa zea) we found opposing, non-significant trends: T. ni gained more biomass on lobed genotypes, while H. zea gained more biomass on heart-shaped genotypes. For army beetworms (Spodoptera exigua), the effects of leaf shape genotype differed depending on the age of the plants and photoperiod of growing conditions. Caterpillars feeding on tissue from older plants (95 days) grown under long day photoperiods had significantly greater consumption, dry biomass, and digestive efficiency on lobed genotypes. In contrast, there were no significant differences between heart-shaped and lobed genotypes for caterpillars feeding on tissue from younger plants (50 days) grown under short day photoperiods. For plants grown under short days, we found that S. exigua consumed significantly less leaf area when feeding on mature leaves than juvenile leaves, regardless of leaf shape genotype. Taken together, our results suggest that the effects of leaf shape variation on insect performance are likely to vary between insect species, growth conditions of the plant, and the developmental stage and age of leaves sampled. Handling editor: May Berenbaum.  相似文献   

3.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   

4.
Although plant–animal interactions like pollination and herbivory are obviously interdependent, ecological investigations focus mainly on one kind of interaction ignoring the possible significance of the others. Plants with flowers offer an extraordinary possibility to study such mutualistic and antagonistic interactions since it is possible to measure changes in floral traits and fitness components in response to different organisms or combinations of them. In a three factorial common garden experiment we investigated single and combined effects of root herbivores, leaf herbivores and decomposers on flowering traits and plant fitness of Sinapis arvensis. Leaf herbivory negatively affected flowering traits indicating that it could significantly affect plant attractiveness to pollinators. Decomposers increased total plant biomass and seed mass indicating that plants use the nutrients liberated by decomposers to increase seed production. We suggest that S. arvensis faced no strong selection pressure from pollen limitation, for two reasons. First, reduced nutrient availability through leaf herbivory affected primarily floral traits that could be important for pollinator attraction. Second, improved nutrient supply through decomposer activity was invested in seed production and not in floral traits. This study indicates the importance of considering multiple plant–animal interactions simultaneously to understand selection pressures underlying plant traits and fitness.  相似文献   

5.
To identify genomic segments associated with days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach has been used in the present study. Genome-wide SNP profiling of extreme phenotypic bulks was conducted for both the traits from the segregating population (F2) derived from the cross combination- ICP 5529 × ICP 11605. A total of 126.63 million paired-end (PE) whole-genome resequencing data were generated for five samples, including one parent ICP 5529 (obcordate leaf and late-flowering plant), early and late flowering pools (EF and LF) and obcordate and lanceolate leaf shape pools (OLF and LLS). The QTL-seq identified two significant genomic regions, one on CcLG03 (1.58 Mb region spanned from 19.22 to 20.80 Mb interval) for days to flowering (LF and EF pools) and another on CcLG08 (2.19 Mb region spanned from 6.69 to 8.88 Mb interval) for OLF and LLF pools, respectively. Analysis of genomic regions associated SNPs with days to flowering and leaf shape revealed 5 genic SNPs present in the unique regions. The identified genomic regions for days to flowering were also validated with the genotyping-by-sequencing based classical QTL mapping method. A comparative analysis of the identified seven genes associated with days to flowering on 12 Fabaceae genomes, showed synteny with 9 genomes. A total of 153 genes were identified through the synteny analysis ranging from 13 to 36. This study demonstrates the usefulness of QTL-seq approach in precise identification of candidate gene(s) for days to flowering and leaf shape which can be deployed for pigeonpea improvement.Subject terms: Genetic association study, Plant hybridization

QTL-seq approach was utilized for mapping of genomic regions/genes associated with days to flowering and leaf shape in pigeonpea. Analysis of genomic regions and associated SNPs with days to flowering and leaf shape revealed 1 and 4 non-synonymous SNPs, respectively. The study demonstrated sequencing-based trait mapping approach can accelerate trait mapping of the targeted traits.  相似文献   

6.
Tolerance is the ability of a plant to regrow or reproduce following damage. While experimental studies typically measure tolerance in response to the intensity of herbivory (i.e., the amount of leaf tissue removed in one attack), the impact of how many times plants are attacked during a growing season (i.e., the frequency of damage) is virtually unexplored. Using experimental defoliations that mimicked patterns of attack by leaf-cutter ants (Atta spp.), we examined how the frequency of herbivory influenced plant tolerance traits in six tree species in Brazil’s Cerrado. For 2 years we quantified how monthly and quarterly damage influenced individual survivorship, relative growth rate, plant architecture, flowering, and foliar chemistry. We found that the content of leaf nitrogen (N) increased among clipped individuals of most species, suggesting that Atta influences the allocation of resources in damaged plants. Furthermore, our clipping treatments affected tree architecture in ways thought to promote tolerance. However, none of our focal species exhibited a compensatory increase in growth (increment in trunk diameter) in response to herbivory as relative growth rates were significantly lower in clipped than in unclipped individuals. In addition, the probability of survival was much lower for clipped plants, and lower for plants clipped monthly than those clipped quarterly. For plants that did survive, simulated herbivory dramatically reduced the probability of flowering. Our results were similar across a phylogenetically distinct suite of species, suggesting a potential extendability of these findings to other plant species in this system.  相似文献   

7.
8.
The diversity of plant neighbors commonly results in direct, bottom‐up effects on herbivore ability to locate their host, and in indirect effects on herbivores involving changes in plant traits and a top‐down control by their enemies. Yet, the relative contribution of bottom‐up and top‐down forces remains poorly understood. We also lack knowledge on the effect of abiotic constraints such as summer drought on the strength and direction of these effects. We measured leaf damage on pedunculate oak (Quercus robur), alone or associated with birch, pine or both in a long‐term tree diversity experiment (ORPHEE), where half of the plots were irrigated while the other half remained without irrigation and received only rainfall. We tested three mechanisms likely to explain the effects of oak neighbors on herbivory: (1) Direct bottom‐up effects of heterospecific neighbors on oak accessibility to herbivores, (2) indirect bottom‐up effects of neighbors on the expression of leaf traits, and (3) top‐down control of herbivores by predators. Insect herbivory increased during the growth season but was independent of neighbor identity and irrigation. Specific leaf area, leaf toughness, and thickness varied with neighbor identity while leaf dry matter content or C:N ratio did not. When summarized in a principal component analysis (PCA), neighbor identity explained 87% of variability in leaf traits. PCA axes partially predicted herbivory. Despite greater rates of attack on dummy caterpillars in irrigated plots, avian predation, and insect herbivory remained unrelated. Our study suggests that neighbor identity can indirectly influence insect herbivory in mixed forests by modifying leaf traits. However, we found only partial evidence for these trait‐mediated effects and suggest that more attention should be paid to some unmeasured plant traits such as secondary metabolites, including volatile organic compounds, to better anticipate the effects of climate change on plant‐insect interactions in the future.  相似文献   

9.
Canonical variate analysis of plants raised in a uniform environment was used to study the pattern of geographical variation in leaf shape ofCrepis tectorum (Asteraceae). The diversity in leaf shape was much greater among populations confined to areas with exposed bedrock in the Baltic region than among weed populations scattered throughout Europe and Canada. A Ward's clustering linked outcrop populations from the archipelago of SW. Finland and the islands of Öland (Sweden) and Saaremaa (Estonia) due to the deeply lobed leaves characterizing these populations, while outcrop populations along the coast of E. Sweden were grouped due to their weakly lobed, narrow and dentate leaves. Most of the weed populations were grouped together but there was no tendency for the variation in this group to be related to habitat or geographical location. A mosaic of variation reflected in sharp (random) differentiation among local populations was superimposed on the large-scale ecogeographical pattern.—Crossing data indicated that most of the variation in degree of leaf dissection is governed by one major gene with deeply lobed leaves dominant over weakly lobed leaves. I suggest that the simple pattern of inheritance may have favoured rapid evolutionary changes in leaf shape, particularly in the Baltic area which emerged relatively late from the sea. Genetic correlations may have constrained the pattern of variation at higher taxonomic levels, since some of the trait associations detected in a segregating F2 generation were also found at the among-population level.  相似文献   

10.
  • Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
  • We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
  • We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
  • These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
  相似文献   

11.
Theory predicts that trade-offs between resistance to herbivory and other traits positively affecting fitness can maintain genetic variation in resistance within plant populations. In the perennial herb Arabidopsis lyrata, trichome production is a resistance trait that exhibits both qualitative and quantitative variation. Using a paternal half-sib design, we conducted two greenhouse experiments to ask whether trichomes confer resistance to oviposition and leaf herbivory by the specialist moth Plutella xylostella, and to examine potential genetic constraints on evolution of increased resistance and trichome density. In addition, we examined whether trichome production is induced by insect herbivory. We found strong positive genetic and phenotypic correlations between leaf trichome density and resistance to leaf herbivory, demonstrating that the production of leaf trichomes increases resistance to leaf damage by P. xylostella. Also resistance to oviposition tended to increase with increasing leaf trichome density, but genetic and phenotypic correlations were not statistically significant. Trichome density and resistance to leaf herbivory were negatively correlated genetically with plant size in the absence of herbivores, but not in the presence of herbivores. There was no evidence of increased trichome production after leaf damage by P. xylostella. The results suggest that trichome production and resistance to leaf herbivory are associated with a cost and that the direction of selection on resistance and trichome density depends on the intensity of herbivory.  相似文献   

12.
  • The induction of defences in response to herbivory is a key mechanism of plant resistance. While a number of studies have investigated the time course and magnitude of plant induction in response to a single event of herbivory, few have looked at the effects of recurrent herbivory. Furthermore, studies measuring the effects of the total amount and recurrence of herbivory on both direct and indirect plant defences are lacking. To address this gap, here we asked whether insect leaf herbivory induced changes in the amount and concentration of extrafloral nectar (an indirect defence) and concentration of leaf phenolic compounds (a direct defence) in wild cotton (Gossypium hirsutum).
  • We conducted a greenhouse experiment where we tested single event or recurrent herbivory effects on defence induction by applying mechanical leaf damage and caterpillar (Spodoptera frugiperda) regurgitant.
  • Single events of 25% and 50% leaf damage did not significantly influence extrafloral nectar production or concentration. Extrafloral nectar traits did, however, increase significantly relative to controls when plants were exposed to recurrent herbivory (two episodes of 25% damage). In contrast, phenolic compounds increased significantly in response to single events of  leaf damage but not to recurrent damage. In addition, we found. that local induction of extrafloral nectar production was stronger than systemic induction, whereas the reverse pattern was observed for phenolics.
  • Together, these results reveal seemingly inverse patterns of induction of direct and indirect defences in response to herbivory in wild cotton.
  相似文献   

13.
Systematic comparisons of species interactions in urban versus rural environments can improve our understanding of shifts in ecological processes due to urbanization. However, such studies are relatively uncommon and the mechanisms driving urbanization effects on species interactions (e.g. between plants and insect herbivores) remain elusive. Here we investigated the effects of urbanization on leaf herbivory by insect chewers and miners associated with the English oak Quercus robur by sampling trees in rural and urban areas throughout most of the latitudinal distribution of this species. In performing these comparisons, we also controlled for the size of the urban areas (18 cities) and gathered data on CO2 emissions. In addition, we assessed whether urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits (phosphorus and nitrogen), and whether such changes correlated with herbivory levels. Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In addition, we found that leaves from urban locations had lower levels of chemical defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen and phosphorus) compared to leaves in rural locations. The magnitude of urbanization effects on herbivory and leaf defences was not contingent upon city size. Importantly, while the effects of urbanization on chemical defences were associated with CO2 emissions, changes in leaf chewer damage were not associated with either leaf traits or CO2 levels. These results suggest that effects of urbanization on herbivory occur through mechanisms other than changes in the plant traits measured here. Overall, our simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances our understanding of the main drivers of urbanization effects on plant–herbivore interactions.  相似文献   

14.
The joint effects of multiple herbivores on their shared host plant have received increasing interest recently. The influence of herbivores on population dynamics of their host plants, especially the relative roles of different types of damage, is, however, still poorly understood. Here, we present a modelling approach, including both deterministic and stochastic matrix modelling, to be used in estimating fitness effects of multiple herbivores on perennial plants. We examined the effects and relative roles of two specialist herbivores, a pre-dispersal seed predator, Euphranta connexa, and a leaf-feeding moth, Abrostola asclepiadis, on the population dynamics and long-term fitness of their shared host plant, a long-lived perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). We collected demographic data during 3 years and combined these data with the effects of natural levels of herbivory measured from the same individuals. We found that both seed predation and leaf herbivory reduced population growth of V. hirundinaria, but only very high damage levels changed the growth trend of the vigorously growing study populations from positive to negative. Demographic modelling indicated that seed predation had a greater impact on plant population growth than leaf herbivory. The effect of leaf herbivory was weaker and diminished with increasing level of seed predation. Evaluation of individual fitness components, however, suggested that leaf herbivory contributed more strongly to host plant fitness than seed predation. Our results emphasize that understanding the effects of a particular herbivore on plant population dynamics requires also knowledge on other herbivores present in the system, because the effect of a particular type of herbivory on plant population dynamics is likely to vary according to the intensity of other types of herbivory. Furthermore, evaluating herbivore impact from using individual fitness components does not necessarily reflect the long-term effects on total plant fitness.  相似文献   

15.
Differential herbivory in contrasting environments is commonly explained by differences in plant traits. When several plant traits are considered, separate correlation analyses between herbivory and candidate traits are typically conducted. This makes it difficult to discern which trait best explain the herbivory patterns, or to avoid spurious inferences due to correlated characters. Aristotelia chilensis saplings sustain greater herbivory in shaded environments than in open habitats. We measured alkaloids, phenolics, trichomes, leaf thickness and water content in the same plants sampled for herbivory. We conducted a multiple regression analysis to estimate the relationship between herbivory and each plant trait accounting for the effect of correlated traits, thus identifying which trait(s) better explain(s) the differential herbivory on A. chilensis. We also estimated insect abundance in both light environments. Palatability bioassays tested whether leaf consumption by the main herbivore on A. chilensis was consistent with field herbivory patterns. Overall insect abundance was similar in open and shaded environments. While saplings in open environments had thicker leaves, lower leaf water content, and higher concentration of alkaloids and phenolics, no difference in trichome density was detected. The multiple regression analysis showed that leaf thickness was the only trait significantly associated with herbivory. Thicker leaves received less damage by herbivores. Sawfly larvae consumed more leaf tissue when fed on shade leaves. This result is consistent with field herbivory and, together with results of insect abundance, renders unlikely that the differential herbivory in A. chilensis was due to greater herbivory pressure in open habitats.  相似文献   

16.
Phenotypic plasticity and developmental instability in leaf traits are common in oak species but the role of environmental factors is not well understood. To decipher possible correlations between different leaf traits and effects of the position of leaves within the tree canopy, we quantified the plasticity of three leaf traits of 30 trees of Quercus alba L., Quercus palustris Muench and Quercus velutina Lam. We hypothesized that trees could modify the shape of their leaves for better adaptation to the variable microclimate within the canopy. Our results demonstrated that the south and north outer leaves were significantly smaller, more lobed and denser than those situated in the inner canopy. The order of leaves on the branch accounted for the plasticity of leaf traits in Q. alba only. Plasticity of lobing in Q. alba and Q. velutina depended on the height of the trees. We detected fluctuating asymmetry (FA) in all three species, but the source of variation depended on branch position in Q. velutina only. FA was more pronounced in north-facing leaves. Plasticity of the leaf traits ranged from small to medium. Plasticity of leaf area and leaf mass per area (LMA) depended on the branch position. However, the plasticity of lobation was not affected by the location of a branch within the tree canopy. Quercus alba and Q. palustris had similar plastic responses but the plasticity of Q. velutina was significantly smaller. We concluded that individual plants detect and cope with environmental stress through vegetative organ modification.  相似文献   

17.
Fluctuating asymmetry (FA) represents small, random variation from symmetry and can be used as an indicator of plant susceptibility to herbivory. We investigated the effects of FA of two oak species, Quercus laevis and Q. geminata, and the responses of three herbivore guilds: leaf miners, gallers, and chewers. To examine differences in FA and herbivory between individuals, 40 leaves from each tree were collected, and FA indices were calculated. To examine differences in FA and herbivory within-individuals, we sampled pairs of mined and unmined leaves for asymmetry measurements. Differences in growth of leaf miners between leaf types were determined by tracing 50 mines of each species on symmetric leaves and asymmetric leaves. Asymmetric leaves contained significantly lower concentrations of tannins and higher concentrations of nitrogen than symmetric leaves for both plant species. Both frequency of asymmetric leaves on plants and levels of asymmetry positively influenced the abundance of Brachys, Stilbosis and other leaf miners, but no significant relationship between asymmetry and herbivory was observed for Acrocercops. Brachys and Stilbosis mines were smaller on asymmetric leaves, but differences in mine survivorship between symmetric and asymmetric leaves were observed only for Stilbosis mines. This study indicated that leaf miners might use leaf FA as a cue to plant quality, although differential survivorship among leaf types was not observed for all species studied. Reasons for the different results between guilds are discussed.  相似文献   

18.
Herbivory is a major source of plant stress and its effects can be severe, decreasing plant fitness, or subtle, affecting the development of leaves by influencing the normal pattern of growth and expansion of leaf blades. Fluctuating asymmetry (FA) analysis is recognized as a measure of plant stress, and can be used to evaluate subtle effects of herbivory on the imperfect growth of bilaterally symmetrical traits, such as leaves. One general issue is that authors usually consider FA as an indicator of stress, which can attract herbivores (plant stress hypothesis), and studies showing that herbivores themselves affect leaf symmetry (herbivory-induced stress hypothesis) are scarce, with mixed results. Here, we investigated the relationship between herbivory by thrips and leaf FA in Banisteriopsis malifolia and Heteropterys escallonifolia (Malpighiaceae). Pseudophilothrips obscuricornis is a free-living, non-pest, sucking species that feeds mainly on leaf buds. We hypothesized that herbivory by thrips in the early stages of leaf development would provoke increased FA levels in mature leaves. The results showed that thrips herbivory rate was low, affecting barely more than 1% of the leaf blade. Nonetheless, thrips-attacked leaves of B. malifolia and H. escallonifolia presented increases of 15 and 27% in leaf asymmetry, respectively, compared to uninjured leaves, corroborating the herbivory-induced stress hypothesis. Since herbivory by thrips in leaf buds was related to significant increases in the stress of mature leaves, we assume that under these circumstances, FA can be used as a biomarker for plant stress following herbivory damage. To be useful as a biomarker of stress, FA in plants must be investigated with caution, taking into account the natural history of the herbivore species and timing of leaf damage.  相似文献   

19.
A long‐standing paradigm in ecology holds that herbivore pressure and thus plant defences increase towards lower latitudes. However, recent work has challenged this prediction where studies have found no relationship or opposite trends where herbivory or plant defences increase at higher latitudes. Here we tested for latitudinal variation in herbivory, chemical defences (phenolic compounds), and nutritional traits (phosphorus and nitrogen) in leaves of a long‐lived tree species, the English oak Quercus robur. We further investigated the underlying climatic and soil factors associated with such variation. Across 38 populations of Q. robur distributed along an 18° latitudinal gradient, covering almost the entire latitudinal and climatic range of this species, we observed strong but divergent latitudinal gradients in leaf herbivory and leaf chemical defences and nutrients. As expected, there was a negative relationship between latitude and leaf herbivory where oak populations from lower latitudes exhibited higher levels of leaf herbivory. However, counter to predictions there was a positive relationship between leaf chemical defences and latitude where populations at higher latitudes were better defended. Similarly, leaf phosphorus and nitrogen increased with latitude. Path analysis indicated a significant (negative) effect of plant chemical defences (condensed tannins) on leaf herbivory, suggesting that the latitudinal gradient in leaf herbivory was driven by an inverse gradient in defensive investment. Leaf nutrients had no independent influence on herbivory. Further, we found significant indirect effects of precipitation and soil porosity on leaf herbivory, which were mediated by plant chemical defences. These findings suggest that abiotic factors shape latitudinal variation in plant defences and that these defences in turn underlie latitudinal variation in leaf herbivory. Overall, this study contributes to a better understanding of latitudinal variation in plant–herbivore interactions by determining the identity and modus operandi of abiotic factors concurrently shaping plant defences and herbivory.  相似文献   

20.
Tolerance to herbivory—the ability of plants to maintain fitness despite herbivore damage—is expected to change during the life cycle of plants because the physiological mechanisms underlying tolerance to herbivory are linked to growth, and resource allocation to growth changes throughout ontogeny. We used the model plant Arabidopsis thaliana to test two hypotheses: that tolerance increases as plants grow, and that tolerance decreases at the onset of reproduction. We chose three accessions previously reported to vary for resistance to herbivory in order to explore whether tolerance and resistance are inversely related. Cabbage looper (Trichoplusia ni) larvae were allowed to feed on plants at either the four-leaf, six-leaf, or 1st-flower developmental stage until 50% of the leaf area was removed. Overall, we found a trend for increased tolerance with ontogenetic stage, but there were important differences among accessions in their response to herbivory at different stages. Tolerance did not decrease with the onset of flowering, nor did we find any correlation between resistance and tolerance levels. Three main plant traits correlated strongly with tolerance: stem mass, an earlier onset of reproduction and a longer fruiting period. This study suggests there may be considerable variation in ontogenetic patterns of tolerance in natural populations of A. thaliana, and warrants further investigations with more accessions or natural populations, and detailed measurements of traits purported to contribute to tolerance in our quest to understand the mechanisms of tolerance to herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号