首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant δ13C–temperature (δ‐T) relation has been established in many systems and is often used as paleotemperature transfer function. However, it is still unclear about the exact contributions of temperature variation to plant 13C discrimination because of covariation between temperature and precipitation (aridity), which reduces confidence in reconstruction of paleoclimate. In this study, we measured carbon isotope composition (δ13C) of 173 samples of C3 perennial herbs from 22 sites across a temperature gradient along the 400 mm isohyet in the farming‐pastoral zone of North China. The results showed that precipitation obviously affected the correlations of temperatures and foliar δ13C. After removing the influence of precipitation by analysis of covariance (ANCOVA), a more strongly positive relationship was obtained between site‐mean foliar δ13C and annual mean temperature (AMT), with a regression coefficient of 0.1636‰/°C (= .0024). For widespread species, Artemisia lavandulaefolia and Artemisia capillaries, the slopes (or coefficients) of foliar δ13C and AMT were significantly steeper (larger) than those of foliar δ13C and AMT where the precipitation influence was not excluded, whereas the δ‐T coefficients of Polygonum persicaria and Leymus chinensis showed little change across the transect after deducting the precipitation effect. Moreover, the positive relationship between temperature and δ13C over the transect could be explained by soil moisture availability related to temperature. Our results may afford new opportunities for investigating the nature of past climate variability.  相似文献   

2.
Stable carbon isotope composition (δ13C) usually shows a negative relationship with precipitation at a large scale. We hypothesized that sampling method affects foliar δ13C and its response pattern to precipitation. We selected 11 sites along a precipitation gradient in Inner Mongolia and collected leaves of Leymus chinensis with five or six replications repeatedly in each site from 2009 to 2011. Additionally, we collected leaves of L. chinensis separately from two types of grassland (grazed and fenced) in 2011. Foliar δ13C values of all samples were measured. We compared the patterns that foliar δ13C to precipitation among different years or different sample sizes, the differences of foliar δ13C between grazed and fenced grassland. Whether actual annual precipitation (AAP) or mean annual precipitation (MAP), it was strongly correlated with foliar δ13C every year. Significant difference was found between the slopes of foliar δ13C to AAP and MAP every year, among the slopes of foliar δ13C to AAP from 2009 to 2011. The more samples used at each site the lower and convergent P‐values of the linear regression test between foliar δ13C and precipitation. Furthermore, there was significant lower foliar δ13C value in presence of grazed type than fenced type grassland. These findings provide evidence that there is significant effect of sampling method to foliar δ13C and its response pattern to precipitation of L. chinensis. Our results have valuable implications in methodology for future field sampling studies.  相似文献   

3.
A decrease in foliar δ13C with increasing precipitation is a common tendency in steppe plants. However, the rate of decrease has been reported to differ between different species or populations. We here hypothesized that plant populations in the same habitat of temperate steppes may not differ in foliar δ13C response patterns to precipitation, but could differ in the levels of plasticity of foliar δ13C across different habitats. In order to test this hypothesis, we conducted controlled watering experiments in northeast China at five sites along a west–east transect at latitude 44°N, which show substantial interannual fluctuations and intra‐annual changes in precipitation among them. In 2001, watering treatment (six levels, three replicates) was assigned to 18 plots at each site. The responses of foliar δ13C to precipitation (i.e., the sum of watering and rainfall) were determined in populations of several grass species that were common across all sites. Although similar linear regression slopes were observed for populations of different species growing at the same site, significantly different slopes were obtained for populations of the same species growing at different sites. Further, the slope of the line progressively decreased from Site I to Site V for all species in this study. These results suggest habitat‐specific differences in plasticity of foliar δ13C in temperate steppe grasses. This indicates that species' δ13C response to precipitation is conservative at the same site due to their long‐term acclimation, but the mechanism responsible behind this needs further investigations.  相似文献   

4.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

5.
The increasing demand for food production and predicted climate change scenarios highlight the need for improvements in crop sustainability. The efficient use of water will become increasingly important for rain‐fed agricultural crops even in fertile regions that have historically received ample precipitation. Improvements in water‐use efficiency in Zea mays have been limited, and warrant a renewed effort aided by molecular breeding approaches. Progress has been constrained by the difficulty of measuring water‐use in a field environment. The stable carbon isotope composition (δ13C) of the leaf has been proposed as an integrated signature of carbon fixation with a link to stomatal conductance. However, additional factors affecting leaf δ13C exist, and a limited number of studies have explored this trait in Z. mays. Here we present an extensive characterization of leaf δ13C in Z. mays. Significant variation in leaf δ13C exists across diverse lines of Z. mays, which we show to be heritable across several environments. Furthermore, we examine temporal and spatial variation in leaf δ13C to determine the optimum sampling time to maximize the use of leaf δ13C as a trait. Finally, our results demonstrate the relationship between transpiration and leaf δ13C in the field and the greenhouse. Decreasing transpiration and soil moisture are associated with decreasing leaf δ13C. Taken together these results outline a strategy for using leaf δ13C and reveal its usefulness as a measure of transpiration efficiency under well‐watered conditions rather than a predictor of performance under drought.  相似文献   

6.
Leaves produced in 2004 of 422 species of Eucalyptus whose natural habitat is southern Australia were sampled at the Currency Creek Arboretum in South Australia where the annual (mainly winter) rainfall is about 400 mm. Tree height, leaf area, leaf dry weight, leaf nitrogen (N) concentration and leaf carbon isotope ratio (δ13C) were measured and the specific leaf area (SLA) calculated. Among the 422 species, the SLA varied from 1.5 to 8.8 m2 kg?1 and N concentration varied from 0.6 to 2.1%, much greater than in 64 species collected along an aridity transect from southwestern Western Australia to central Australia in 2003. Also, the range of leaf δ13C values was similar in the common garden to that across the aridity transect. For the 45 species present in both studies, the SLA and leaf N concentration in the common garden were similar to those measured in leaves along the aridity transect, indicating that these characteristics are inherent in the species and vary little with environment. The variation in leaf δ13C in the common garden was just as great as along the transect, but the values measured in the one location were poorly correlated with those along the transect. This was not expected, as the variation in δ13C at one common site in South Australia was anticipated to be less than along the aridity gradient where annual rainfall varied from 250 to 1200 mm. Path analysis on the 45 species common to both studies indicated that rainfall did not have a direct effect on δ13C, but the differences in δ13C resulted from indirect effects of rainfall on SLA and N concentration. δ13C was negatively correlated with SLA but positively correlated with N. Thus, both effects may compensate for each other so that no significant relationship between δ13C and rainfall was observable. However, there is a large degree of variation of δ13C at any level of rainfall. The origin and ecological implications of this observation are discussed.  相似文献   

7.
1. Adult Pacific salmon (Oncorhynchus spp.) transport marine nutrients to fresh waters and disturb sediments during spawning. The relative importance of nutrient fertilisation and benthic disturbance by salmon spawners can be modulated by environmental conditions (e.g. biological, chemical and physical conditions in the catchment, including human land use). 2. To determine the importance of the environmental context in modifying the uptake and incorporation of salmon‐derived material into stream biota, we measured the nitrogen (δ15N) and carbon (δ13C) isotopic composition of benthic algae (i.e. epilithon) and juvenile coho salmon (Oncorhynchus kisutch) in seven streams across a timber‐harvest gradient (8–69% catchment area harvested), both before and during the salmon run. Conditional bootstrap modelling simulations were used to assess variability in the response of epilithon and juvenile coho salmon to spawning salmon. 3. In response to spawning salmon, epilithon exhibited enrichment in both δ15N (mean: 1.5‰) and δ13C (2.3‰). Juvenile coho were also enriched in both δ15N (0.7‰) and δ13C (1.4‰). Conditional bootstrap models indicate decreased variation in data as spatial replication increases, suggesting that the number of study sites can influence the results of Pacific salmon isotope studies. 4. Epilithon isotopic enrichment was predicted by environmental conditions, with δ15N enrichment predicted by stream temperature and timber harvest (R2 = 0.87) and δ13C enrichment by discharge, sediment size, timber harvest and spawner density (R2 = 0.96). Furthermore, we found evidence for a legacy effect of salmon spawners, with pre‐spawner δ15N and δ13C of both epilithon and juvenile coho predicted by salmon run size in the previous year. 5. Our results show that the degree of incorporation of salmon‐derived nitrogen and carbon differs among streams. Furthermore, the environmental context, including putative legacy effects of spawning salmon, can influence background isotopic concentrations and utilisation of salmon‐derived materials in southeast Alaska salmon streams. Future studies should consider the variation in isotopic composition of stream biota when deciding on the number of study sites and samples needed to generate meaningful results.  相似文献   

8.
Spatial variation in mean annual precipitation is the principal driver of plant water and nitrogen status in drylands. The natural abundance of carbon stable isotopes (δ13C) in photosynthetic tissues of C3 plants is an indicator of time‐integrated behaviour of stomatal conductance; while that of nitrogen stable isotopes (δ15N) is an indicator of the main source of plant N (soil N vs. atmospheric N2). Previous studies in drylands have documented that plant δ13C and δ15N values increase with decreasing mean annual precipitation due to reductions in stomatal conductance, and soil enriched in 15N, respectively. However, evidence for this comes from studies focused on stable isotopes measurements integrated at the plant community level or on dominant plants at the site level, but little effort has been made to study C and N isotope variations within a species growing along rainfall gradients. We analysed plant δ13C, δ15N and C/N values of three woody species having different phenological leaf traits (deciduous, perennial and aphyllous) along a regional mean annual precipitation gradient from the central‐western Argentinian drylands. Noticeably, plant δ13C and δ15N values in the three woody species did not increase towards sites with low precipitation or at the start of the growing season (drier period), as we expected. These results suggest that environmental factors other than mean annual precipitation may be affecting plant δ13C and δ15N. The short‐term environmental conditions may interact with species‐specific plant traits related to water and nitrogen use strategies and override the predictive influence of the mean annual precipitation on plant δ13C and δ15N widely reported in drylands.  相似文献   

9.
The present study explores the xylem‐tapping parasitism by mistletoe (Tapinanthus oleifolius) on native tree species along the Kalahari Transect (KT) using the stable isotopes of carbon and nitrogen. Mistletoe‐host pairs were collected at three geographical locations along the KT rainfall gradient in the 2005 and 2006 wet seasons. Foliar total carbon, total nitrogen and their stable isotope compositions (δ13C and δ15N) were measured. Heterotrophy (H) was calculated using foliar δ13C values of mistletoes and their hosts as an indicator of proportion of carbon in the mistletoes derived from host photosynthate. Based on the mistletoe H‐value and relationship between the mistletoe foliar δ15N and their host foliar δ15N, the results showed that mistletoes along the KT derived both nitrogen and carbon from their hosts. Mistletoes may regulate water use in relation to nitrogen supply. The proportion of carbon in the mistletoes derived from host photosynthate was between 35% and 78%, and the degree of heterotrophy was species‐specific with only limited annual variation. The study emphasizes the importance of incorporating parasitic associations in future studies on studying carbon, water and nutrient cycling along the Kalahari.  相似文献   

10.
Yang L M  Han M  Zhou G S  Li J D 《农业工程》2007,27(1):16-23
Leymus chinensis is a keystone species in the temperate zone grassland of China. Along the NECT (Northeast China Transect) in 2001, water-use efficiency of L. chinensis was analyzed with δ13C, and changes in the stoma density of its leaves were observed and computed under a microscope. Results showed that the ecological plasticity modulation of the stoma density of L. chinensis and its water-use efficiency were two important mechanisms for its broad ecological adaptability. From east to west along the NECT, the δ13C of the species varied from -27.49‰ to -23.57‰, consisting with the reduction of annual precipitation, soil water and annual average temperature, but increased with the increase of the elevation of sampling sites. The stoma density increased from 96.9/mm2 to 169.5/mm2, indicating that the water-use efficiency for the species was improved along the gradient. The linear coefficient between the two parameters was significant (R2 = 0.7338). The results of a stepwise regression analysis showed that the soil water was the first marked factor for determining the stoma density, and the next was the annual precipitation, which suggested that the water factors were the primary ecological factors influencing the stoma density of L. chinensis. The findings in this study showed that the responses of the stoma density and the water-use efficiency for L. chinensis to environmental changes were very complicated. They may be the outcome operated synthetically by all environmental factors in the long-term adaptation to different ecological environments, including human activity, for L. chinensis.  相似文献   

11.
The removal of perennial bioenergy crops, such as Miscanthus, has rarely been studied although it is an important form of land use change. Miscanthus is a C4 plant, and the carbon (C) it deposits during its growth has a different isotopic signature (12/13C) compared to a C3 plant. Identifying the proportion of C stored and released to the atmosphere is important information for ecosystem models and life cycle analyses. During a removal experiment in June 2011 of a 20‐year old Miscanthus field (Grignon, France), vegetation was removed mechanically and chemically. Two replicate plots were converted into a rotation of annual crops, two plots had Miscanthus removed with no soil disturbance, followed by bare soil (set‐aside), one control plot was left with continued Miscanthus cultivation, and an adjacent field was used as annual arable crops control. There was a significant difference in the isotopic composition of the total soil C under Miscanthus compared with adjacent annual arable crops in all three measured soil layers (0–5, 5–10 and 10–20 cm). Before Miscanthus removal, total C in the soil under Miscanthus ranged from 4.9% in the top layer to 3.9% in the lower layers with δ13C values of ?16.3 to ?17.8 while soil C under the adjacent arable crop was significantly lower and ranged from 1.6 to 2% with δ13C values of ?23.2. This did not change much in 2012, suggesting the accumulation of soil C under Miscanthus persists for at least the first year. In contrast, the isotopic signals of soil respiration 1 year after Miscanthus removal from recultivated and set‐aside plots were similar to that of the annual arable control, while just after removal the signals were similar to that of the Miscanthus control. This suggests a rapid change in the form of soil C pools that are respired.  相似文献   

12.
Although Miscanthus sinensis grasslands (Misc‐GL) and Cryptomeria japonica forest plantations (Cryp‐FP) are proposed bioenergy feedstock systems, their relative capacity to sequester C may be an important factor in determining their potential for sustainable bioenergy production. Therefore, our objective was to quantify changes in soil C sequestration 47 years after a Misc‐GL was converted to a Cryp‐FP. The study was conducted on adjacent Misc‐GL and Cryp‐FP located on Mt. Aso, Kumamoto, Japan. After Cryp‐FP establishment, only the Misc‐GL continued to be managed by annual burning every March. Mass C and N, δ13C, and δ15N at 0–30 cm depth were measured in 5 cm increments. Carbon and N concentrations, C:N ratio, δ13C, and δ15N were measured in litter and/or ash, and rhizomes or roots. Although C input in Misc‐GL by M. sinensis was approximately 36% of that in Cryp‐FP by C. japonica, mean annual soil C sequestration in Misc‐GL (503 kg C ha?1 yr?1) was higher than that in Cryp‐FP (284 kg C ha?1 yr?1). This was likely the result of larger C input from aboveground litter to soil, C‐quality (C:N ratio and lignin concentration in aboveground litter) and possibly more recalcitrant C (charcoal) inputs by annual burning. The difference in soil δ15N between sites indicated that organic C with N had greater cycling between heterotrophic microbes and soil and produces more recalcitrant humus in Misc‐GL than in Cryp‐FP. Our data indicate that in terms of soil C sequestration, maintenance of Misc‐GL may be more advantageous than conversion to Cryp‐FP in Aso, Japan.  相似文献   

13.
Pine wilt disease (PWD ) is considered as the most destructive forest‐invasive alien species in China. We measured gas exchange parameters and foliar carbon isotope ratios (δ13C) of different infection phases of Masson pine in order to investigate the effect of Bursaphelenchus xylophilus infection on photosynthetic responses and resource‐use efficiency. The results showed that net photosynthetic rate (P n), transpiration rate (T ), stomatal conductance (g s), and internal CO 2 concentrations (C i) decreased in the infested trees at photosynthetic photon flux density (PPFD ) levels from 0 to 2,000 μmol m?2 s?1 compared with controls. The maximum net photosynthetic rate (P max) was significantly declined in the infected trees than in controls (<  .05). There also exist significant differences in dark respiration rate (R d) among different infection phases (<  .05), but the value is highest in the middle infection phase, followed by the control and then the terminal infection phase. This indicates that Pinus massoniana plants need to consume more photosynthetic products during the middle infection phase in order to defend against pine sawyer beetle feeding and PWD infection. Isotopic analysis revealed a significant decrease of the foliar δ13C (<  .05), as much as 2.5‰ lower in the infected trees. The mean leaf N content was about 12.94% less in the middle infection phase and 27.06% less in the terminal infection phase, causing a significant increase of the foliar C:N ratio in infested trees. Both of the net photosynthetic rates and foliar δ13C were linearly correlated with the foliar N content. We also found a significant decrease (<  .05) of resource‐use efficiency in PWD ‐induced P. massoniana plants, which can be attributed to the closure of stomatal pores and the inactivation or loss of both Rubisco and other key Calvin cycle enzymes. This study highlights the impact of photosynthetic characteristics, foliar carbon isotope ratios, and resource‐use efficiency of PWD ‐induced trees, which can help identify PWD infestations at the photosynthetic and physiological levels so as to better facilitate management actions.  相似文献   

14.
Stable isotopes provide a powerful means of elucidating the trophic ecology of organisms. Analyses of variation in the ratio of nitrogen isotopes (δ15N) can provide insights into the trophic position of species with broad diets and the ability to occupy multiple positions in food webs, such as ants. The most powerful studies compare subjects across various spatial scales, but to do so, local variation in δ15N baselines must be taken into account. To date, a wide variety of baseline calibration methods have been employed, leading some authors to suggest that a standard approach is needed, and that the reality of environmental variation necessitates that this should be at fine scales. In this study, we examine the fine‐scale variation in δ15N value of colonies of the ant Formica kozlovi Dlussky (Hymenoptera: Formicidae: Formicini) along a sloped transect in Mongolia, and compare these with values for associated soils in an effort to shed further light on this issue. We find variation in ant δ15N to the order of one trophic level (ca. 3‰), over a distance of only 1 km. Ant δ15N was highly correlated with soil δ15N, and variation in mineral soil δ15N explained ca. 81% of the variation in ant δ15N. This study underlines the importance of local‐scale baseline corrections for isotopic studies, particularly in environments where baseline variation might be expected. It further suggests that δ15N of mineral soils may provide a suitable baseline for ecological studies of terrestrial arthropods.  相似文献   

15.
  1. Glacial retreat, accompanied by shifts in riparian vegetation and glacier meltwater inputs, alters the energy supply and trophic structure of alpine stream food webs. Our goal in this study was to enhance understanding of dietary niches of macroinvertebrates inhabiting different alpine streams with contrasting glacial and non‐glacial (groundwater, precipitation, snowmelt) water inputs in conjunction with seasonal and habitat‐specific variation in basal resource availability.
  2. We measured a range of stream physico‐chemical attributes as well as carbon and nitrogen isotopes (δ13C, δ15N) of macroinvertebrates and primary food sources at seven sites across seasons within a Swiss glaciated catchment (Val Roseg) undergoing rapid glacial retreat (1–2 km between 1997 and 2014). Sampling sites corresponded to streams used in a previous (1997/1998) study within the same alpine catchment.
  3. Physico‐chemical attributes showed wide variation in environmental conditions across streams and seasons. Significant correlation among physico‐chemical proxies of glacier meltwater (phosphate‐P, total inorganic carbon, conductivity, turbidity) and macroinvertebrate δ13C, δ15N, and size‐corrected standard ellipse area (a proxy for feeding niche width) values showed that the extent of glacial water input shapes the energy base among alpine streams. Feeding niche differences among common alpine stream insect taxa (Chironomidae, Baetidae, Heptageniidae) were not significant, indicating that these organisms probably are plastic in feeding behaviour, opportunistically relying on food resources available in a particular stream and season.
  4. Seasonal trends in macroinvertebrate δ13C largely followed patterns in periphyton δ13C values, indicating that autochthonous resources were the main consumer energy source within the stream network, as shown previously. The overall range in macroinvertebrate δ13C (?33.5 to ?18.4‰) and δ15N (?6.9 to 6.7‰) values also corresponded to values measured in the previous study, suggesting that macroinvertebrates altered diets in line with changes in environmental conditions and food resources during a period of rapid glacial retreat. Our results suggest that environmental changes brought on by rapid glacial retreat have not yet caused a profound change in the trophic structure within these fluvial networks.
  相似文献   

16.
以东亚广布种栓皮栎为例,通过对南北样带(26°-40° N)上7个群体的调查取样,并结合2个生活史阶段,探讨栓皮栎碳氮同位素比值随纬度环境的变异规律.结果表明: 在纬向梯度上,栓皮栎叶片δ13C和δ15N随纬度的增加分别呈现非线性的增加和下降趋势,且成年树叶片δ13C和δ15N均显著高于幼树;同时,树龄和纬度对叶片δ15N和δ13C均无显著交互作用,表明栓皮栎幼树和成年树纬向环境变化的响应较为一致.随机森林模型结果显示,栓皮栎叶片δ15N主要受土壤养分,如土壤有机质、磷和氮含量的影响,而叶片δ13C主要受水分因子,如空气相对湿度、降水量等的影响.  相似文献   

17.
以东亚广布种栓皮栎为例,通过对南北样带(26°-40° N)上7个群体的调查取样,并结合2个生活史阶段,探讨栓皮栎碳氮同位素比值随纬度环境的变异规律.结果表明: 在纬向梯度上,栓皮栎叶片δ13C和δ15N随纬度的增加分别呈现非线性的增加和下降趋势,且成年树叶片δ13C和δ15N均显著高于幼树;同时,树龄和纬度对叶片δ15N和δ13C均无显著交互作用,表明栓皮栎幼树和成年树纬向环境变化的响应较为一致.随机森林模型结果显示,栓皮栎叶片δ15N主要受土壤养分,如土壤有机质、磷和氮含量的影响,而叶片δ13C主要受水分因子,如空气相对湿度、降水量等的影响.  相似文献   

18.
In this study we used recent (2010) and herbarium material (1980) of six bryophyte species to assess long‐term atmospheric deposition in natural forested areas in northern Spain. For this purpose, tissue nitrogen and carbon content, as well as δ13C and δ15N signatures of samples of Hypnum cupressiforme, Polytrichastrum formosum, Leucobryum juniperoideum, Rhytidiadelphus loreus, Homalothecium lutescens and Diplophyllum albicans were analysed and comparisons made between years and species. In addition, the usefulness of each of the six species was evaluated. The range of values observed was similar to that in other studies carried out in rural areas. Significantly lower values were found in 2010 for N (H. cupressiforme), δ15N (R. loreus and D. albicans), C (R. loreus) and δ13C (all except L. juniperoideum). Our natural areas are thus now less influenced by atmospheric pollutants than they were, most probably due to changes in some traditional local activities. Differences were observed between species for all the four parameters studied, so different species must not be analysed together. Finally, R. loreus and H. lutescens seem to be good bioindicators, sensitive even with a few samples, although further studies are needed to corroborate their usefulness.  相似文献   

19.
Human‐induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low‐latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high‐elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual‐resolution) and isotopic composition (decadal‐resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood 13C discrimination, resulting from increasing water use efficiency (20–60%), coinciding with rising atmospheric CO2. Changes in 13C discrimination were not followed, however, by shifts in tree ring δ18O, indicating site‐ and species‐specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming‐induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high‐elevation ecosystems to atmospheric change.  相似文献   

20.
We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号