首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
Density‐dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central‐place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density‐dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density‐dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our predictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreeding, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density‐dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density‐dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density‐dependent competition on breeding success and population regulation remain uncertain in this system.  相似文献   

2.
The presence of unmarked individuals is common in mark–recapture study populations; however, their origin and significance in terms of population dynamics remain poorly understood. At Marion Island, southern Indian Ocean, where virtually all southern elephant seal Mirounga leonina pups born annually (1983–2008) were marked in a long‐term mark–resight study, large numbers of unmarked seals occur. Unmarked seals originate either from marker (tag) loss or from immigration. We aimed to identify patterns in the occurrence of marked and unmarked individuals that will allude to the possible origin and significance of the untagged component of the population, predicting that tag loss will add untagged seals to mainly adult age categories whereas migrating untagged individuals will be mostly juveniles. We fitted a generalized linear model using the factors month, year and age‐class to explain the relative abundance of untagged seals (tag ratio) from 1997 to 2009. Site usage of untagged seals relative to tagged seals was assessed using a binomial test. Untagged seals, predominantly juveniles, were present in the highest proportions relative to tagged seals during the winter haulout (tagged seals/total seals less than 0.3) and the lowest proportion (approximately 0.5) during the female breeding haulout, increasing in relative abundance from 1997 to 2009. Untagged seals were distributed evenly across suitable haulout sites while tagged seals displayed high local site fidelity and occurred in greater numbers at or near large breeding beaches. Untagged seals are considered to be mostly migrant seals that disperse from other islands within the southern Indian Ocean and haul out at Marion Island during non‐breeding haulouts in particular. Some of these seals immigrate to the breeding population, which can be a key component of the local population dynamics. We emphasize the need for mark–recapture studies to evaluate the role of the unmarked component of a population, thereby inducing a more confident estimation of demographic parameters from the marked sample.  相似文献   

3.
The annual moult creates the highest physiological stress during a penguin's breeding‐cycle and is preceded by a period of hyperphagia at sea. Although crucial to individual survival, foraging strategies before moult have been little investigated in keystone marine consumers in the Southern Ocean. The Macaroni Penguin Eudyptes chrysolophus demonstrates how individuals may adjust their foraging strategies during this period in line with constraints such as potential intraspecific competition between localities, foraging ability between dimorphic sexes and timing at sea between breeding and non‐breeding population components. We recorded pre‐moult behaviour at sea for 22 Macaroni Penguins from Crozet and Kerguelen Islands (southern Indian Ocean) during 2009 and 2011, using light‐based geolocation and stable isotope analysis. Penguins were distributed in population‐specific oceanic areas with similar surface temperatures (3.5 °C) south of the archipelagos, where they foraged at comparable trophic levels based on stable isotopes of their blood. Bayesian ‘broken stick’ modelling with concurrent analysis of seawater temperature records from the animal‐borne devices showed that within each population, females remained 6 days longer than males in the colder waters before heading back towards their colonies. Finally, 17 other non‐breeding individuals that moulted earlier had a higher mean blood δ15N value than did post‐breeding birds, meaning that early moulters probably fed more on fish than did late moulters. Our findings of such adjustments in foraging strategies developed across locality, sex and breeding status help understanding of the species' contrasted pre‐moult biology across its range and its ecology in the non‐breeding period.  相似文献   

4.
Island populations may evolve distinct behavioral repertoires as a response to the conditions of insular life. Strong intraspecific competition is typical in insular lizards and may include cannibalism. In this study, we investigated sexual and age patterns of aggression in two populations of the Skyros wall lizard (Podarcis gaigeae), one from the main island of Skyros (Aegean Sea, Greece) and another from the satellite islet Diavates. The latter is terrestrial predator‐free biotope, hosting a dense population of large‐bodied lizards that have been reported to exert cannibalism. In staged encounters, we examined the aggressive propensities of adult male and female lizards against their age‐peers and juveniles. Males from both populations were much more aggressive than females toward juveniles and other adults. Males from Diavates were more frequently aggressive to juveniles and other male lizards than males from Skyros. Diavates cannibals also captured their targets at shorter latency. We ascribe this distinct behavioral pattern to the high population density. Infanticide and intramale aggressiveness confer two great advantages to cannibals: food and elimination of future rivals.  相似文献   

5.
Substantial variation in foraging strategies can exist within populations, even those typically regarded as generalists. Specializations arise from the consistent exploitation of a narrow behavioral, spatial or dietary niche over time, which may reduce intraspecific competition and influence adaptability to environmental change. However, few studies have investigated whether behavioral consistency confers benefits at the individual and/or population level. While still recovering from commercial sealing overexploitation, Australian fur seals (AUFS; Arctocephalus pusillus doriferus) represent the largest marine predator biomass in south‐eastern Australia. During lactation, female AUFS adopt a central‐place foraging strategy and are, thus, vulnerable to changes in prey availability. The present study investigated the population‐level repeatability and individual consistency in foraging behavior of 34 lactating female AUFS at a south‐east Australian breeding colony between 2006 and 2019. Additionally, the influence of individual‐level behavioral consistency on indices of foraging success and efficiency during benthic diving was determined. Low to moderate population‐level repeatability was observed across foraging behaviors, with the greatest repeatability in the mean bearing and modal dive depth. Individual‐level consistency was greatest for the proportion of benthic diving, total distance travelled, and trip duration. Indices of benthic foraging success and efficiency were positively influenced by consistency in the proportion of benthic diving, trip duration and dive rate but not influenced by consistency in bearing to most distal point, dive depth or foraging site fidelity. The results of the present study provide evidence of the benefits of consistency for individuals, which may have flow‐on effects at the population level.  相似文献   

6.
Models of primate sociality focus on the costs and benefits of group living and how factors such as rank, feeding competition, alliance formation, and cooperative behavior shape within‐group social relationships. We conducted a series of controlled field experiments designed to investigate how resource distribution (one or three of four reward platforms) and amount of food on a reward platform affected foraging strategies and individual feeding success in four groups of wild common marmosets (Callithrix jacchus) living in the Caatinga of northeastern Brazil. At our field site, common marmoset groups are characterized by a single breeding female who can produce twin litters twice per year, strong social cohesion, and cooperative infant care provided principally by several adult male helpers. We found that except for the dominant breeding female, rank (based on aggression) was not a strong predictor of feeding success. Although the breeding female in each group occupied the highest rank position and obtained the greatest daily feeding success, all other group members, including adults and juveniles experienced relatively equal feeding success across most experimental conditions. This was accomplished using a balance of behavioral strategies related to contest competition, scramble competition (associated with a finder's advantage), and social tolerance (sharing the same feeding platform). Based on these results, the social structure of common marmosets is best described as “single female dominance,” with the breeding female maximizing food intake needed to offset the energetic costs associated with reproductive twinning and the ability to produce two litters per year. Cooperative infant caregiving, in which the number of helpers is positively correlated with offspring survivorship, requires a set of behavioral strategies that serve to reduce contest competition and promote prosocial behaviors at feeding sites.  相似文献   

7.
During the breeding season northern fur seals (Callorhinus ursinus) congregate on the Pribilof Islands in large numbers creating the potential for intraspecific competition. Due to the declining trend in the Pribilof Islands population of fur seals, it is important to understand how prey resources are partitioned among the population. Fur seals exhibit a high degree of sexual dimorphism resulting in energetic differences among age and sex classes. Therefore, we hypothesized that subadult male and adult female fur seals would differ in the type and size of prey consumed. We examined the diets of subadult male (age 2–8; mean mass 28–176 kg) and adult female (age ≥ 3 yr; mean mass 13–50 kg) seals on St. Paul Island from 1992 to 2000. Prey remains found in fecal samples were compared using niche overlap indices. There was nearly complete dietary niche overlap between subadult male and adult female fur seals. Walleye pollock (Theragra chalcogramma), Pacific salmon (Oncorhynchus spp.), Pacific herring (Clupeia pallasi), and cephalopods were common prey items found in the diets of both groups. We found differences in the size of pollock consumed and that geographic location of sample collection may be important in determining diet differences. Our results indicate high levels of dietary overlap among subadult male and adult female fur seals.  相似文献   

8.
Female northern elephant seals, Mirounga angustirostris, from Año Nuevo (AN) in central California feed offshore in mid‐latitude waters (40°–55°N). Migratory patterns and foraging locations of seals from Mexico are unknown. Rookeries on San Benitos (SB) islands in Baja California Sur, Mexico, are ~1,170 km south of AN. Although the colonies are similar in size, seals from SB begin breeding earlier and have an earlier breeding birthing peak than seals from AN. To determine if the foraging location of seals from Mexico was similar to that of seals from California, we measured δ13C and δ15N values in the hair of 48 suckling pups at SB and 37 from AN, assuming that their isotopic signatures reflected those of mothers' milk, their exclusive diet. The mean δ13C and δ15N values for SB pups (?16.1‰± 0.9‰ and 17.7‰± 0.9‰, respectively) were significantly higher than those for AN pups (?17.6‰± 0.4‰ and 15.6‰± 1.0‰, respectively). From data on environmental isotope gradients and known behavior of SB and AN populations, we hypothesize that the isotope differences are due to females in the SB colony foraging ~8° south of seals from AN. This hypothesis can be tested by deployment of satellite tags on adult females from the SB colony.  相似文献   

9.
Ontogeny of diving and foraging behavior in marine top predators is poorly understood despite its importance in population recruitment. This lack of knowledge is partly due to the difficulties of monitoring juveniles in the wild, which is linked to high mortality early in life. Pinnipeds are good models for studying the development of foraging behaviors because juveniles are large enough to robustly carry tracking devices for many months. Moreover, parental assistance is absent after a juvenile departs for its first foraging trip, minimizing confounding effects of parental input on the development of foraging skills. In this study, we tracked 20 newly weaned juvenile southern elephant seals from Kerguelen Islands for up to 338 days during their first trip at sea following weaning. We used a new generation of satellite relay tags, which allow for the transmission of dive, accelerometer, and location data. We also monitored, at the same time, nine adult females from the colony during their post‐breeding trips, in order to compare diving and foraging behaviors. Juveniles showed a gradual improvement through time in their foraging skills. Like adults females, they remarkably adjusted their swimming effort according to temporal changes in buoyancy (i.e., a proxy of their body condition). They also did not appear to exceed their aerobic physiological diving limits, although dives were constrained by their smaller size compared to adults. Changes in buoyancy appeared to also influence their decision to either keep foraging or return to land, alongside the duration of their haul outs and choice of foraging habitat (oceanic vs. plateau). Further studies are thus needed to better understand how patterns in juveniles survival, and therefore elephant seal populations, might be affected by their changes in foraging skills and changes in their environmental conditions.  相似文献   

10.
Sami Aikio 《Oikos》2004,104(1):51-58
Individuals allocate resources to the expansion of their foraging area and those resources are no longer available for the traits that determine how well those individuals are able to protect their foraging area against competitors. The resulting trade‐off between foraging area size and the traits associated with the ability to compete for the resources within the foraging area applies to ecological scenarios as different as territorial defence by individuals and colonies, and light competition in plants. Whether the trade‐off affects species performance in competition for resources at the area of overlap between foraging areas depends on the symmetry of resource division. In symmetric competition resources are divided equally between the competitors, while in asymmetric competition the individual with the smallest foraging area, and consequently the greatest competitive ability, gains all the resources. Competition may also be a combination of the symmetric and asymmetric processes. I studied the effects of competitive asymmetry on population dynamics and coexistence of two annual species with different sized foraging areas using an individual‐based spatially explicit simulation model. Symmetric competition favoured the species with the larger foraging area and did not allow coexistence. Competitive asymmetry favoured the species with smaller foraging area and allowed coexistence, which was due to the consequences of losing an asymmetric competition being more severe than losing a symmetric competition. The mechanism of coexistence is the larger foraging area's superiority in low population densities (little competition) and the smaller foraging area's ability to win a large foraging area when competition was intense. Competitive asymmetry and small size of both foraging areas led to population dynamics dominated by long‐term fluctuations of small intensity. Symmetric competition and large size of the foraging areas led to large short‐term fluctuations, which often resulted in the extinction of one or both of the species due to demographic stochasticity.  相似文献   

11.
Individual foraging site fidelity, whereby individuals repeatedly visit the same foraging areas, is widespread in nature, and likely benefits individuals through higher foraging efficiency and potentially, higher breeding success. It may arise as a consequence of habitat or resource specialisation, or alternatively, where resources are abundant or predictable, the partitioning of space might guarantee individuals exclusive foraging opportunities. We tracked seven adult great black‐backed gulls Larus marinus at a North Sea colony from early incubation to the end of the breeding season in 2016, providing a total of 1170 foraging trips over a mean ± SD tracking period of 67 ± 16 days. There was clear spatial segregation between individuals, with almost no overlap of their core areas (50% utilisation distribution) during incubation and chick‐rearing. Core areas were relatively small and there was high repeatability (R ± SE) in foraging parameters, including initial departure direction (0.73 ± 0.11), foraging range (0.41 ± 0.14) and cumulative distance travelled (0.19 ± 0.1) throughout the breeding season. Despite the low spatial overlap, there was little evidence of differential habitat use by individuals. The near‐exclusive individual foraging areas of this species, usually considered to be a generalist, indicate that where there is high resource availability throughout the breeding season and a small local population, individuals appear to adopt a territorial strategy which likely reduces intraspecific competition.  相似文献   

12.
Biological communities are shaped by competition between and within species. Competition is often reduced by inter‐ and intraspecific specialization on resources, such as differencet foraging areas or time, allowing similar species to coexist and potentially contributing to reproductive isolation. Here, we examine the simultaneous role of temporal and spatial foraging segregation within and between two sympatric sister species of seabirds, Northern Macronectes halli and Southern Macronectes giganteus Giant Petrels. These species show marked sexual size dimorphism and allochrony (with earlier breeding by Northern Giant Petrels) but this is the first study to test for differences in foraging behaviours and areas across the entire breeding season both between the two species and between the sexes. We tracked males and females of both species in all breeding stages at Bird Island, South Georgia, to test how foraging distribution, behaviour and habitat use vary between and within species in biological time (incubation, brood‐guard or post‐brood stages) and in absolute time (calendar date). Within each breeding stage, both species took trips of comparable duration to similar areas, but due to breeding allochrony they segregated temporally. Northern Giant Petrels had a somewhat smaller foraging range than Southern Giant Petrels, reflecting their greater exploitation of local carrion and probably contributing to their recent higher population growth. Within species, segregation was spatial, with females generally taking longer, more pelagic trips than males, although both sexes of both species showed unexpectedly plastic foraging behaviour. There was little evidence of interspecific differences in habitat use. Thus, in giant petrels, temporal segregation reduces interspecific competition and sexual segregation reduces intraspecific competition. These results demonstrate how both specialization and dynamic changes in foraging strategies at different scales underpin resource division within a community.  相似文献   

13.
Some efforts to reduce invasive populations have paradoxically led to population increases. This phenomenon, referred to as overcompensation, occurs when reduced intraspecific pressures increase juvenile survival or maturation rates, leading to increased population size. Overcompensation in response to eradication efforts could derail management efforts, so it would be beneficial to evaluate the likelihood of overcompensation prior to removal. We conducted a series of experiments to examine the potential for overcompensation of a non-native population of the European green crab, Carcinus maenas, which was being removed in Bodega Harbor, California. First, we examined the impact of adults on juvenile survival by measuring adult cannibalism on juveniles in the presence and absence of alternative prey, and the survival of tethered juveniles at varying adult densities. Second, we examined how adult presence affected juvenile short-term foraging and growth rates. Although adult presence reduced juvenile short-term foraging, we detected only minimal cannibalism and found no evidence that adults greatly reduce juvenile growth or survivorship. These results suggest that overcompensation is not likely to occur in this population in response to removal. We assessed this prediction using pre- and post-removal surveys of juvenile recruitment in Bodega Harbor compared to nearby populations, testing for evidence of overcompensation. Relative juvenile abundance did not statistically increase in removal compared to reference populations, consistent with our conclusion from the experiments. This experimental approach which focuses on an organism’s population biology provides a tool to assess capacity for assessing the capacity for overcompensation in management strategies for invasive species.  相似文献   

14.
Mosquito larvae face numerous biotic and abiotic challenges that affect their development and survivorship, as well as adult fitness. We conducted two experiments under semi‐natural conditions to evaluate the effects of intraspecific competition, nutrient limitation and sub‐lethal doses of malathion on individual life history traits in adult Culex pipiens (Diptera: Culicidae). In the first experiment, larvae of Cx. pipiens were reared at different intraspecific densities and exposed to sub‐lethal doses of malathion. In the second experiment, different intraspecific densities of Cx. pipiens larvae were reared under conditions of low or high larval nutrients, and subsequent adults were fed on either water or 10% sucrose solution. Malathion treatment had relatively minor effects compared with density, which had significant negative effects on development rate, survivorship to adulthood, body size (wing length) and longevity. As larval density increased, a sex ratio distortion in survivorship to adulthood emerged, in which a bias towards males was apparent. Nutrient‐rich larval environments alleviated, in part, the effects of increasing density and extended the lifespan of mosquitoes fed on water and 10% sucrose. Density‐dependent alterations in adult longevity attributable to the larval environment are complex and show contrasting results depending on interactions with other environmental factors. This study suggests that larval resource availability and competition influence Cx. pipiens population growth correlates and have lasting effects on traits that relate to a mosquito's ability to vector pathogens.  相似文献   

15.
In highly dynamic and unpredictable environments such as the Southern Ocean, species that have evolved behaviors that reduce the effects of intra-specific competition may have a selective advantage. This is particularly true when juveniles face disadvantages when foraging due to morphological or physiological limitation, which is the case for many marine mammals. We tracked the at-sea movements of 48 juvenile southern elephant seals (Mirounga leonina) between the ages of 1 and 4 years from the population at Macquarie Island using locations derived from recorded light levels. There were significant differences in the total amount of the Southern Ocean covered by the different age-groups. The younger seals used a smaller area than the older seals. On average, the younger individuals also made more trips to sea than the older seals and did not travel as far on each trip. Females spent more time at sea than males and there were no significant differences between the total areas used by male and females. In summary, younger seals remained closer to the island at all times, and they spent more time in more northerly regions that older seals. These differences in behavior created temporal and spatial segregation between juveniles of different ages. Therefore, we suggest that these temporal and spatial separations help to avoid intra-specific competition for resources on land, space on beaches, and at-sea foraging areas. Such modifications of haul-out timing and behavior enable them to exploit a patchy and unpredictable environment.  相似文献   

16.
Summary Although mussel beds are common in many intertidal habitats, the ecological significance of the aggregated distribution of mussels has not been examined. The ribbed mussel, Geukensia demissa, is found in dense aggregations on the seaward margin of many salt marshes in New England. Here, we examine the population structure of G. demissa in a New England salt marsh and investigate experimentally the costs and benefits of aggregation.Size, growth rate, and settlement rates of mussels decrease with increasing tidal height, whereas survivorship and longevity increase with increasing tidal height. Winter ice dislodges mussels from the substratum, resulting in mortality over all size classes, whereas crab predation results in the mortality of smaller mussels. The intensity of each of these mortality agents decreases with increasing tidal height. Effects of intraspecific competition on individual growth and mortality also decrease with increasing tidal height.At high densities, individual growth rates were reduced, with depression of growth rates most pronounced on smaller individuals. Mortality from sources other than intraspecific crowding, however, was reduced at high mussel densities, including mortality due to winter ice and crab predators. As a result, our data suggest that the mussel population at our study site would be reduced by 90% in only five years and no juveniles would survive through their second year without an aggregated distribution.Juveniles settle gregariously with or without adults present. The aggregated distribution of settlers and the postsettlement movement of smaller mussels to favorable microhabitats result in size and age class segregation within the population. This probably reduces intraspecific competition for food, while maintaining the survivorship advantages of an aggregated distribution.  相似文献   

17.
In many Palaearctic wader species there is a clear separation in the timing of adult and juvenile southward migration. This phenomenon is traditionally explained by the selection on adults to depart early from breeding grounds and necessity of juveniles to prepare longer for migration. In this study we hypothesize that late departure from natal grounds may also be adaptive for juveniles, as it allows them to avoid intensified interference competition at stopover sites with adult, usually more dominant conspecifics. To test this hypothesis we analysed long-term data on stopover behaviour of juvenile wood sandpipers (Tringa glareola) staying at a central Polish stopover site under varying levels of competition from adult birds. The results clearly indicated that juveniles were highly disadvantaged by the simultaneous presence of adults at the same staging site, as under intense competition from older conspecifics they refuelled more slowly and attained lower fat reserves. It was also found that juveniles which were forced to compete with adults left the site quickly and possibly searched for more favourable staging places. All these imply that delayed departure from natal grounds may be adaptive for juvenile waders, allowing them to mismatch the timing of their first migration with the peak of adult passage and, thus, reduce the negative consequences of intraspecific competition during migration.  相似文献   

18.
Elephant seals, Mirounga spp., are highly dimorphic, having different energetic requirements according to age and sex, and foraging in various ecological and oceanographic contexts. Resource partitioning has been shown for the sub-Antarctic populations of southern elephant seals, M. leonina, where colonies are surrounded by narrow shelves that deepen abruptly. In contrast, seals from Península Valdés (Argentina), in the northernmost extent of the breeding range, face an extended, shallow, temperate, and productive continental shelf. We integrated tracking data from 98 animals (juveniles and adults, males and females) gathered over more than two decades, and found that although all available habitats were used, individuals segregated by age and sex. Juvenile males favored shelf habitats, whereas subadult and adult males also used the shelf break. Juvenile females preferred the shelf and the more distant Argentine Basin used by postbreeding and postmolt adult females. Males showed the highest proportion of area-restricted search locations, suggesting more spatially concentrated feeding activity, and likely reflecting a preference for foraging habitat and prey. Our results are consistent with those from other populations, implying that elephant seals show remarkable similarities in habitat use by age and sex classes, despite broad differences in the offshore habitats between sub-Antarctic and temperate ecosystems.  相似文献   

19.
Leopard seals are conspicuous apex predators in Antarctic coastal ecosystems, yet their foraging ecology is poorly understood. Historically, the ecology of diving vertebrates has been studied using high‐resolution time‐depth records; however, to date such data have not been available for leopard seals. Twenty‐one time‐depth recorders were deployed on seasonally resident adult females in January and February between 2008 and 2014. The average deployment length was 13.65 ± 11.45 d and 40,308 postfilter dives were recorded on 229 foraging trips. Dive durations averaged 2.20 ± 1.23 min. Dives were shallow with 90.1% measuring 30 m or less, and a mean maximum dive depth of 16.60 ± 10.99 m. Four dive types were classified using a k‐means cluster analysis and compared with corresponding animal‐borne video data. Dive activity (number of dives/hour) was concentrated at night, including crepuscular periods. Haul‐out probabilities were highest near midday and were positively correlated with available daylight. Visual observations and comparisons of diving activity between and within years suggest individual‐based differences of foraging effort by time of day. Finally, dive and video data indicate that in addition to at‐surface hunting, benthic searching and facultative scavenging are important foraging strategies for leopard seals near coastal mesopredator breeding colonies.  相似文献   

20.
Land‐use changes are expected to affect plant–disperser conditional mutualisms through changes in animal behavior. We analyzed the oak–rodent conditional mutualism in Mediterranean fragmented forests at two climatically different locations. We quantified fragmentation effects on seed dispersal effectiveness and assessed if such effects were due to changes in habitat structure and intraspecific competition for acorns in fragmented areas. Fragmentation decreased cover from predators within mouse territories as well as intraspecific competition for acorns. This resulted in lower dispersal effectiveness in small forest fragments. Globally, habitat structure was the main driver in mouse foraging decisions. In small fragments, low shelter availability precluded mouse movements, leading to short mobilization distances and low caching rates. However, as the proportion of cover from predators increased, mice were able to modulate their foraging decisions depending on intraspecific competition for acorns, resulting in higher dispersal quality. In addition to fragmentation effects, delayed breeding in the southern locality caused lower number of rodents during the dispersal season, which reduced acorn mobilization rates. Our study shows that seed dispersal patterns in managed systems can be analyzed as the result of management effects on key environmental factors in dispersers’ foraging decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号