首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that elicits severe vascular inflammatory diseases. Oenanthe javanica (water dropwort) extract has anti‐arrhythmic, neuroprotective and anti‐diabetic activity. However, isorhamnetin‐3‐O‐galactoside (I3G), an active compound from O. javanica, is not researched well for its biological activity. Here, we investigated the anti‐inflammatory activities of I3G by monitoring the effects of I3G on the lipopolysaccharide (LPS) or cecal ligation and puncture (CLP)‐mediated release of HMGB1 and HMGB1 or CLP‐mediated modulation of inflammatory responses. I3G potently inhibited the release of HMGB1 and down‐regulated HMGB1‐dependent inflammatory responses in human endothelial cells. I3G also inhibited HMGB1‐mediated hyperpermeability and leukocyte migration in mice. Further studies revealed that I3G suppressed the production of tumor necrosis factor‐α and activation of nuclear factor‐κB by HMGB1. In addition, I3G reduced CLP‐induced HMGB1 release and sepsis‐related mortality. Given these results, I3G should be viewed as a candidate therapeutic agent for the treatment of severe vascular inflammatory diseases such as sepsis or septic shock via inhibition of the HMGB1 signaling pathway. J. Cell. Biochem. 114: 336–345, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
High mobility group box 1 (HMGB1) protein is a crucial cytokine that mediates response to infection, injury, and inflammation. Rosmarinic acid (RA) is an important component of the leaves of Perilla frutescens and has neuroprotective, anti‐microbial, anti‐oxidant, and anti‐cancer effects but little is known of its effects on HMGB1‐mediated inflammatory response. Here, we investigated this issue by monitoring the effects of RA on the lipopolysaccharide (LPS) or cecal ligation and puncture (CLP)‐mediated release of HMGB1 and HMGB1‐mediated modulation of inflammatory responses. RA potently inhibited the release of HMGB1 and down‐regulated HMGB1‐dependent inflammatory responses in human endothelial cells. RA also inhibited HMGB1‐mediated hyperpermeability and leukocyte migration in mice. Furthermore, RA reduced CLP‐induced HMGB1 release and sepsis‐related mortality. Given these results, RA should be viewed as a candidate therapeutic agent for the treatment of various inflammatory diseases via inhibition of the HMGB1 signaling pathway. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Inhibition of high mobility group box 1 (HMGB1) and restoration of endothelial integrity are emerging as attractive therapeutic strategies for the management of severe vascular inflammatory diseases. Recently, we found that JH-4, a synthesized decursin derivative, exhibited a strong anti-Hutchinson-Gilford progeria syndrome by efficiently blocking progerin-lamin A/C binding. In this study, we examined the effects of JH-4 on HMGB1-mediated septic responses and the survival rate in a mouse sepsis model. The anti-inflammatory activities of JH-4 were monitored based on its effects on lipopolysaccharide- or cecal ligation and puncture (CLP)-mediated release of HMGB1. The antiseptic activities of JH-4 were determined by measuring permeability, leukocyte adhesion, migration, and the activation of proinflammatory proteins in HMGB1-activated human umbilical vein endothelial cells and mice. JH-4 inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses in human endothelial cells. JH-4 also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with JH-4 reduced CLP-induced release of HMGB1, sepsis-related mortality, and pulmonary injury in vivo. Our results indicate that JH-4 is a possible therapeutic agent to treat various severe vascular inflammatory diseases via the inhibition of the HMGB1 signaling pathway.  相似文献   

4.
Sauchinone is one of the active lignan isolated from Saururus chinensis, which has been considered to possess various pharmacological activities, such as antitumor, hepatoprotective, antioxidant, and anti‐inflammatory effects. However, the functional roles of sauchinone in interleukin‐1 beta (IL‐1β)‐stimulated human osteoarthritis (OA) chondrocytes are still unknown. Thus, in this study, we investigated the anti‐inflammatory effects of sauchinone in IL‐1β‐stimulated chondrocytes. Our results demonstrated that sauchinone significantly attenuated NO and PGE2 production, as well as inhibited iNOS and COX‐2 expression in IL‐1β‐stimulated OA chondrocytes. In addition, sauchinone efficiently inhibited IL‐1β‐induced MMP‐3 and MMP‐13 release in human OA chondrocytes. Furthermore, sauchinone significantly attenuated the activation of NF‐κB in human OA chondrocytes. In conclusion, we showed for the first time that sauchinone inhibited inflammatory response in IL‐1β‐stimulated human chondrocytes probably through inhibiting the activation of NF‐κB signaling pathway. These data suggest that sauchinone may be a potential agent in the treatment of OA.  相似文献   

5.
Mechanical ventilation (MV) can save the lives of patients with sepsis. However, MV in both animal and human studies has resulted in ventilator‐induced diaphragm dysfunction (VIDD). Sepsis may promote skeletal muscle atrophy in critically ill patients. Elevated high‐mobility group box‐1 (HMGB1) levels are associated with patients requiring long‐term MV. Ethyl pyruvate (EP) has been demonstrated to lengthen survival in patients with severe sepsis. We hypothesized that the administration of HMGB1 inhibitor EP or anti‐HMGB1 antibody could attenuate sepsis‐exacerbated VIDD by repressing HMGB1 signalling. Male C57BL/6 mice with or without endotoxaemia were exposed to MV (10 mL/kg) for 8 hours after administrating either 100 mg/kg of EP or 100 mg/kg of anti‐HMGB1 antibody. Mice exposed to MV with endotoxaemia experienced augmented VIDD, as indicated by elevated proteolytic, apoptotic and autophagic parameters. Additionally, disarrayed myofibrils and disrupted mitochondrial ultrastructures, as well as increased HMGB1 mRNA and protein expression, and plasminogen activator inhibitor‐1 protein, oxidative stress, autophagosomes and myonuclear apoptosis were also observed. However, MV suppressed mitochondrial cytochrome C and diaphragm contractility in mice with endotoxaemia (P < 0.05). These deleterious effects were alleviated by pharmacologic inhibition with EP or anti‐HMGB1 antibody (P < 0.05). Our data suggest that EP attenuates endotoxin‐enhanced VIDD by inhibiting HMGB1 signalling pathway.  相似文献   

6.
Drug repositioning is used to discover drug candidates to treat human diseases, through the application of drugs or compounds that are approved for the treatment of other diseases. This method can significantly reduce the time required and cost of discovering new drug candidates for human diseases. Previous studies have reported pro‐inflammatory responses of endothelial cells to the release of polyphosphate (PolyP). In this study, we examined the anti‐inflammatory responses and mechanisms of methylthiouracil (MTU), which is an antithyroid drug, and its effects on PolyP‐induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behaviour of human neutrophils and vascular permeability were determined in PolyP‐activated HUVECs and mice. MTU suppressed the PolyP‐mediated vascular barrier permeability, up‐regulation of inflammatory biomarkers, adhesion/migration of leucocytes, and activation and/or production of nuclear factor‐κB, tumour necrosis factor‐α and interleukin‐6. Furthermore, MTU demonstrated protective effects on PolyP‐mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of MTU on various systemic inflammatory diseases, such as sepsis or septic shock.  相似文献   

7.
Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)‐induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein‐HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound‐healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT‐qPCR and Western blot, respectively. The release of cytokines interleukin‐6 and tumour necrosis factor‐α was measured by ELISA. HSPA12B suppressed LPS‐induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS‐induced up‐regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS‐induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS‐induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway.  相似文献   

8.
Extracellular high‐mobility group box‐1 (HMGB1) acts as a signalling molecule during inflammation, cell differentiation and angiogenesis. Increased abundance of HMGB1 is associated with several pathological disorders such as cancer, asthma and chronic obstructive pulmonary disease (COPD). In this study, we investigated the relevance of HMGB1 in the pathological remodelling present in patients with idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension (PH) associated with COPD. Remodelled vessels present in COPD with PH and IPAH lung samples were often surrounded by HMGB1‐positive cells. Increased HMGB1 serum levels were detected in both patient populations compared to control samples. The effects of physiological HMGB1 concentrations were then examined on cellular responses in vitro. HMGB1 enhanced proliferation of pulmonary arterial smooth muscle cells (PASMC) and primary human arterial endothelial cells (PAEC). HMGB1 stimulated p38, extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) phosphorylation. Furthermore, activation of the downstream AP‐1 complex proteins c‐Fos and c‐Jun was observed. Silencing of c‐Jun ablated the HMGB1‐induced proliferation in PASMC. Thus, an inflammatory component such as HMGB1 can contribute to PASMC and PAEC proliferation and therefore potentially to vascular remodelling and PH pathogenesis.  相似文献   

9.
Dexmedetomidine (DEX) is a widely used clinical anesthetic with proven anti‐inflammatory effects. Both high mobility group box 1 (HMGB1) and pyroptosis play an important role in the inflammatory response to infection and trauma. Thus far, there have been no studies published addressing the effect of DEX on HMGB1 and pyroptosis. In order to fill this gap in the literature, bone marrow‐derived macrophages (BMDMs) were exposed to HMGB1 (4 µg/mL) with or without DEX (50 μM) pretreatment. The production of pro‐inflammatory cytokines [such as tumor necrosis factor α (TNF‐α), interleukin 1β (IL‐1β), and IL‐18], phosphorylation of extracellular signal‐regulated protein kinases 1 and 2 (ERK1/2) and P38, and the activation of caspase‐1 were measured by enzyme immunosorbent assay, western blot analysis, confocal microscope, and flow cytometry, respectively. We found that DEX protected against HMGB1‐induced cell death of BMDMs. In addition, DEX suppressed the generation of TNF‐α, IL‐1β, and IL‐18 as well as the phosphorylation of ERK1/2 and P38. Moreover, DEX inhibited caspase‐1 activation and decreased pyroptosis. Taken together, these findings demonstrate the protective effect of DEX in mediating HMGB1‐induced cellular injury, thus indicating that DEX may be a potential therapeutic candidate for the management of infection and trauma‐derived inflammation.  相似文献   

10.
In this study, we examined the neuroprotective effects and anti‐inflammatory properties of Dl‐3‐n‐butylphthalide (NBP) in Sprague‐Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL‐positive cells at 7 days post‐injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF‐κB expression at 1 day post‐injury. In a co‐culture system with BV‐2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV‐2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV‐2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF‐κB expression in BV‐2 cells. Our findings demonstrate that NBP may have neuroprotective and anti‐inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF‐κB signalling.  相似文献   

11.
12.
Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. It has been routinely simulated in animals by several techniques, including infusion of exogenous bacterial toxin (endotoxemia) or bacteria (bacteremia), as well as surgical perforation of the cecum by cecal ligation and puncture (CLP)1-3. CLP allows bacteria spillage and fecal contamination of the peritoneal cavity, mimicking the human clinical disease of perforated appendicitis or diverticulitis. The severity of sepsis, as reflected by the eventual mortality rates, can be controlled surgically by varying the size of the needle used for cecal puncture2. In animals, CLP induces similar, biphasic hemodynamic cardiovascular, metabolic, and immunological responses as observed during the clinical course of human sepsis3. Thus, the CLP model is considered as one of the most clinically relevant models for experimental sepsis1-3.Various animal models have been used to elucidate the intricate mechanisms underlying the pathogenesis of experimental sepsis. The lethal consequence of sepsis is attributable partly to an excessive accumulation of early cytokines (such as TNF, IL-1 and IFN-γ)4-6 and late proinflammatory mediators (e.g., HMGB1)7. Compared with early proinflammatory cytokines, late-acting mediators have a wider therapeutic window for clinical applications. For instance, delayed administration of HMGB1-neutralizing antibodies beginning 24 hours after CLP, still rescued mice from lethality8,9, establishing HMGB1 as a late mediator of lethal sepsis. The discovery of HMGB1 as a late-acting mediator has initiated a new field of investigation for the development of sepsis therapies using Traditional Chinese Herbal Medicine. In this paper, we describe a procedure of CLP-induced sepsis, and its usage in screening herbal medicine for HMGB1-targeting therapies.  相似文献   

13.
BackgroundMaslinic acid (MA), a natural triterpenoid from Olea europaea, prevents oxidative stress and pro-inflammatory cytokine generation. High mobility group box 1 (HMGB1) has been recognized as a late mediator of sepsis, and the inhibition of the release of HMGB1 and the recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis.MethodsWe tested the hypothesis that MA induces sirtuin 1 and heme oxygenase-1, which inhibit the release of HMGB1 in lipopolysaccharide (LPS)-stimulated cells, thus inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. MA was administered after LPS or HMGB1 challenge, and the antiseptic activity of MA was determined based on permeability, the activation of pro-inflammatory proteins, and the production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model.ResultsMA significantly reduced the release of HMGB1 in LPS-activated HUVECs and attenuated the CLP-induced release of HMGB1. Additionally, MA alleviated HMGB1-mediated vascular disruption and inhibited hyperpermeability in mice, and in vivo analysis revealed that MA reduced sepsis-related mortality and tissue injury.ConclusionTaken together, the present results suggest that MA reduced HMGB1 release and septic mortality and thus may be useful in the treatment of sepsis.  相似文献   

14.
Sepsis is a common cause of deaths of patients in intensive care unit. The study aims to figure out the role of long non-coding RNA (lncRNA) GAS5 in the myocardial depression in mice with sepsis. Cecal ligation and puncture (CLP) was applied to induce sepsis in mice, and then the heart function, myocardium structure, and the inflammatory response were evaluated. Differentially expressed lncRNAs in mice with sepsis were identified. Then gain- and loss-of-functions of GAS5 were performed in mice to evaluate its role in mouse myocardial depression. The lncRNA-associated microRNA (miRNA)–mRNA network was figured out via an integrative prediction and detection. Myocardial injury was observed by overexpression of high-mobility group box 1 (HMGB1) in septic mice with knockdown of GAS5 expression. Activity of NF-κB signaling was evaluated, and NF-κB inhibition was induced in mice with sepsis and overexpression of GAS5. Collectively, CLP resulted in myocardial depression and injury, and increased inflammation in mice. GAS5 was highly expressed in septic mice. GAS5 inhibition reduced myocardial depression, myocardial injury and inflammation responses in septic mice. GAS5 was identified to bind with miR-449b and to elevate HMGB1 expression, thus activating the NF-κB signaling. HMGB1 overexpression or NF-κB inactivation reduced the GAS5-induced myocardial depression and inflammation in septic mice. Our study suggested that GAS5 might promote sepsis-induced myocardial depression via the miR-449b/HMGB1 axis and the following NF-κB activation.  相似文献   

15.
Acteoside, an active phenylethanoid glycoside, has been used traditionally as an anti-inflammatory agent. The molecular mechanism by which acteoside reduces inflammation was investigated in lipopolysaccharide (LPS)-induced Raw264.7 cells and in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. In vitro, acteoside inhibits high mobility group box 1 (HMGB1) release and iNOS/NO production and induces heme oxygenase-1 (HO-1) expression in a concentration-dependent manner, while HO-1 siRNA antagonizes the inhibition of HMGB1 and NO. The effect of acteoside is inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and Nfr2 siRNA, indicating that acteoside induces HO-1 via p38 MAPK and NF-E2-related factor 2 (Nrf2). In vivo, acteoside increases survival and decreases serum and lung HMGB1 levels in CLP-induced sepsis. Overall, these results that acteoside reduces HMGB1 release and may be beneficial for the treatment of sepsis.  相似文献   

16.
Brain injuries as well as neurodegenerative diseases, are associated with neuro‐inflammation characterized by astroglial and microglial activation and/or proliferation. Recently, we reported that lipopolysaccharide (LPS)‐activation of microglia inhibits junctional channels and promotes hemichannels, two connexin43 functions in astrocytes. This opposite regulation is mediated by two pro‐inflammatory cytokines, interleukin‐1 beta and tumor necrosis factor‐alpha, released from activated microglia. Because cannabinoids (CBs) have anti‐inflammatory properties and their receptors are expressed by glial cells, we investigated on primary cortical cultures the effects of CB agonists, methanandamide and synthetic CBs on (i) cytokines released from LPS‐activated microglia and (ii) connexin43 functions in astrocytes subjected to pro‐inflammatory treatments. We observed that CBs inhibited the LPS‐induced release of interleukin‐1 beta and tumor necrosis factor‐alpha from microglia. Moreover, the connexin43 dual regulation evoked by the pro‐inflammatory treatments, was prevented by CB treatments. Pharmacological characterizations of CB actions on astrocytic connexin43 channels revealed that these effects were mainly mediated through CB1 receptors activation, although non‐CB1/CB2 receptors seemed to mediate the action of the methanandamide. Altogether these data demonstrate that in inflammatory situations CBs exert, through the activation of different sub‐types of glial CB receptors, a regulation on two functions of connexin43 channels in astrocytes known to be involved in neuron survival.  相似文献   

17.
Human leukemic THP‐1 promonocytes are widely used as a model for peripheral blood monocytes. However, superoxide production during respiratory burst (RB) of non‐differentiated THP‐1 (nd‐THP‐1) cells is very low. Here we present a rapid and low‐cost method for measuring the chemiluminescence (CL) of opsonized zymosan (OZ) induced RB which allows detection of Escherichia coli lipopolysaccharide (LPS) induced priming of nd‐THP‐1 cells on the basis of CL reaction kinetics. Maximum CL intensity obtained was 2.20 ± 0.25 and 1.30 ± 0.11 relative light units, while CL peak time was achieved at 18.1 ± 2.6 and 28.7 ± 1.3 min in primed and non‐primed cells, respectively. The priming of nd‐THP‐1 cells with LPS evoked typical TNF‐α and IL‐6 production. We tested the effects of bovine lactoferrin and protein fractions from Lactobacillus helveticus BGRA43 fermented milk for potential anti‐inflammatory effects on LPS primed nd‐THP‐1 cells. Four fractions were found to inhibit the OZ‐induced CL in a dose‐dependent manner (IC50 3–30 µg/mL), while lactoferrin inhibited CL to a lesser extent (IC50 270 µg/mL). These results suggest that measuring CL response of nd‐THP‐1 cells can serve as a method for screening anti‐inflammatory compounds which could be used in reducing the risk of phagocyte‐mediated inflammatory diseases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
19.
High‐mobility group box 1 (HMGB1) shows pro‐inflammatory activity in various inflammatory diseases and has been found up‐regulated in chronic obstructive pulmonary disease (COPD). Lung macrophages play an important role in airway inflammation and lung destruction in COPD, yet whether HMGB1 is involved in cigarette smoke (CS)‐induced lung macrophage dysfunction is unknown. We sought to evaluate the intracellular localization and release of HMGB1 in lung macrophages from COPD patients and CS‐exposed mice, and to investigate the role of HMGB1 in regulating autophagy in CS extract (CSE)‐treated lung macrophages (MH‐S cells). Our results showed that HMGB1 was highly expressed in lung tissues and sera of COPD patients and CS‐exposed mice, along with predominantly cytoplasmic exporting from nuclei in lung macrophages. In vitro experiments revealed that CSE promoted the expression, nucleocytoplasmic translocation and release of HMGB1 partly via the nicotinic acetylcholine receptor (nAChR). Blockade of HMGB1 with chicken anti‐HMGB1 polyclonal antibody (anti‐HMGB1) or glycyrrhizin (Gly) attenuated the increase of LC3B‐II and Beclin1, migration and p65 phosphorylation, suggesting the involvement of HMGB1 in autophagy, migration and NF‐κB activation of lung macrophages. Hydroxychloroquine (CQ), an autophagy inhibitor, enhanced the increase of LC3B‐II but not Beclin1 in CSE or rHMGB1‐treated MH‐S cells, and inhibition of autophagy by CQ and 3‐methyladenine (3‐MA) abrogated the migration and p65 phosphorylation of CSE‐treated cells. These results indicate that CS‐induced HMGB1 translocation and release contribute to migration and NF‐κB activation through inducing autophagy in lung macrophages, providing novel evidence for HMGB1 as a potential target of intervention in COPD.  相似文献   

20.
Alcoholic liver disease (ALD) is the major cause of chronic liver disease and a global health concern. ALD pathogenesis is initiated with liver steatosis, and ALD can progress to steatohepatitis, fibrosis, cirrhosis and even hepatocellular carcinoma. Salvianic acid A (SAA) is a phenolic acid component of Danshen, a Chinese herbal medicine with possible hepatoprotective properties. The purpose of this study was to investigate the effect of SAA on chronic alcoholic liver injury and its molecular mechanism. We found that SAA significantly inhibited alcohol‐induced liver injury and ameliorated ethanol‐induced hepatic inflammation. These protective effects of SAA were likely carried out through its suppression of the BRD4/HMGB1 signalling pathway, because SAA treatment largely diminished alcohol‐induced BRD4 expression and HMGB1 nuclear translocation and release. Importantly, BRD4 knockdown prevented ethanol‐induced HMGB1 release and inflammatory cytokine production in AML‐12 cells. Similarly, alcohol‐induced pro‐inflammatory cytokines were blocked by HMGB1 siRNA. Collectively, our results reveal that activation of the BRD4/HMGB1 pathway is involved in ALD pathogenesis. Therefore, manipulation of the BRD4/HMGB1 pathway through strategies such as SAA treatment holds great therapeutic potential for chronic alcoholic liver disease therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号