首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Plants can change in phenology and biomass allocation in response to environmental change. It has been demonstrated that nitrogen is the most limiting resource for plants in many terrestrial ecosystems. Previous studies have usually focused on either flowering phenology or biomass allocation of plants in response to nitrogen addition; however, attempts to link flowering phenology and biomass allocation are still rare. In this study, we tested the effects of nitrogen addition on both flowering phenology and reproductive allocation in 34 common species. We also examined the potential linkage between flowering time and reproductive allocation in response to nitrogen addition.Methods We conducted a 3-year nitrogen addition experiment in Tibetan alpine meadow. We measured first flowering date and the reproductive allocation for 34 common plant species in control, low and high nitrogen added plots, respectively. One-way analysis of variance was used to examine differences of first flowering date and reproductive allocation among treatments. The relationships between the change in species first flowering date and change in reproductive allocation in response to nitrogen addition were examined by calculating Pearson correlation coefficients.Important findings For most species, both first flowering date and reproductive allocation significantly responded to nitrogen addition. Nitrogen addition significantly delayed the first flowering date and reduced the reproductive allocation for all graminoid species, but accelerated flowering and increased reproductive allocation for most forb species. We found that changes in first flowering date significantly negatively correlated with the changes in reproductive allocation over species in response to nitrogen, which indicated a positive relationship between flowering response and plant performance in reproductive allocation. Species that advanced their flowering time with nitrogen addition increased their reproductive allocation, whereas those that delayed flowering time tended to decline in reproductive allocation with nitrogen addition. Our results suggest that species-specific switch from vegetative growth to reproductive growth could influence species performance.  相似文献   

2.
Sercu  Bram K.  Moeneclaey  Iris  Goeminne  Birgit  Bonte  Dries  Baeten  Lander 《Plant Ecology》2021,222(6):749-760

Temperate forest understorey plants are subjected to a strong seasonality in their optimal growing conditions. In winter and early spring, low temperatures are suboptimal for plant growth while light becomes limited later in spring season. We can thus expect that differences in plant phenology in relation to spatiotemporal environmental variation will lead to differences in reproductive output, and hence selection. We specifically studied whether early flowering, a paradoxical pattern that is observed in many plant species, is an adaptive strategy, and whether selection for early flowering was confounded with selection for flower duration or was attributable to environmental variables. We used Geum urbanum as a study species to investigate the effect of relevant environmental factors on the species’ flowering phenology and the consequences for plant reproductive output. We monitored the phenology of four to six plants in each of ten locations in a temperate deciduous forest (Belgium). We first quantified variation in flowering time within individuals and related this temporal variation to individual flower reproductive output. Then, we studied inter-individual variation here-in and linked this to reproduction at the plant level, hence studying the selection differential. We found that flowering within individual plants of Geum urbanum was spread over a long period from June to October. Reproductive output of individual flowers, measured as total seed mass per flower, declined during the season. We found no indication for selection for early flowering but rather for longer flower duration. Larger plants had an earlier flowering onset and a higher seed mass, which suggests that these factors covary and are condition dependent. None of the studied environmental variables could explain plant size, although soil pH and to a lesser extent light availability had a positive direct effect on seed mass per plant. Finally, we suggest that the high intra-individual variation in flowering time, which might be a risk spreading strategy of the plant in the presence of seed predation, limits the potential for selection on flowering phenology.

  相似文献   

3.
One of the most intriguing and complex characteristics of reproductive phenology in tropical forests is high diversity within and among forests. To understand such diversity, Newstrom et al. provided a systematic framework for the classification of tropical flowering phenology. They adopted frequency and regularity as criteria with priority, and classified plants in La Selva, Costa Rica, where most plants reproduced more than once a year irregularly. Many other studies have demonstrated annual cycles corresponding to rainfall patterns at the community level in Neotropical forests, including La Selva. On the other hand, supraannual flowering synchronized among various plant species, called general flowering, is known from aseasonal lowland dipterocarp forests in Southeast Asia. Within both forests, a wide spectrum of flowering patterns is found. This range of patterns suggests the great potential of tropical phenological studies to explore the selective pressures on phenology. Various abiotic and biotic factors can be selective agents. The shared pollinators hypothesis suggests that plant species sharing pollinators segregate flowering temporarily to minimize interspecific overlap in flowering times and thus minimize ineffective pollination or competition for pollinators, indicating strong phylogenetic constraints in timing and variation of flowering. Comparison of phenology within and among forests may help our understanding of phenological diversity. Attempts are now being made to develop a common language to communicate concepts and render interpretations of data more compatible among investigators and to create a network to promote comparative studies. Received: September 8, 2000 / Accepted: January 30, 2001  相似文献   

4.
Flowering and fruiting phenologies of individual plants and flowers of Lobelia inflata, a North American summer annual, were studied in the field and greenhouse to determine whether onset of flowering and fruit maturation were correlated, and the degree to which these reproductive phenologies were influenced by the environment. Within each of two field populations, larger plants flowered earlier and produced more flowers than smaller plants. Onset of flowering was positively correlated with onset of fruit maturation but not perfectly so. Two factors decreased the intensity of this correlation. First, at the flower level, the earlier a flower bloomed, the longer the resulting fruit took to develop. Second, fruit development times varied significantly among individual plants. In the greenhouse, individuals watered more frequently attained greater size and flowered earlier than individuals watered less frequently. Nutrient additions did not affect plant size or onset of flowering. These results indicate that for the summer annual Lobelia inflata, reproductive phenologies are phenotypically correlated, and that timing of reproduction is resource and size dependent, as it is for other monocarpic plant species.  相似文献   

5.
Ollerton  Jeff  Lack  Andrew 《Plant Ecology》1998,139(1):35-47
Over three years the flowering phenology of individuals of Lotus corniculatus has been studied in relation to fruit set and seed predation to determine the relationships between four components of flowering time, plant size and reproductive success. Timings of first and peak flowering, and duration and synchrony of flowering differed between individuals in the same years. Between years, timing of first flowering was highly correlated for the same individuals, and was closely correlated with plant size and duration of flowering–larger plants flowered earlier and for a longer period. Peak flowering and synchrony were not correlated between-years for individuals.Fruit production and seed predation were correlated with some of the components of flowering phenology in some years, but not in others. The inconstancy of these relationships suggests that directional or stabilising selection is not acting consistently on the aspects of reproductive success studied in this work. The inconstancy of selection may result in the rather asynchronous flowering phenologies of individuals of L. corniculatus observed.We emphasize the importance of studying different components of flowering phenology in relation to individual plant size over several seasons. This work has shown that plant size not only has a direct effect on individual plant fecundity but also can influence flowering time and hence indirectly affect reproductive output.  相似文献   

6.
Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.  相似文献   

7.
Reproductive patterns of tropical and temperate plants are usually associated with climatic seasonality, such as rainfall or temperature, and with their phylogeny. It is still unclear, however, whether plant reproductive phenology is influenced by climatic factors and/or phylogeny in aseasonal subtropical regions. The plant reproductive phenology of a subtropical rain forest in northern Taiwan (24°45′ N, 121°35′ E) was monitored at weekly intervals during a 7‐yr period (2002–2009). The flowering patterns of 46 taxa and fruiting patterns of 26 taxa were examined and evaluated in relation to climatic seasonality, phylogenetic constraints, and different phenophases. Our results indicated that most of the studied species reproduced annually. Additionally, both community‐wide flowering and fruiting patterns exhibited distinct annual rhythms and varied little among years. The community flowering peak matched seasonal changes in day length, temperature, and irradiance; while the community fruiting peak coincided with an increase in bird richness and the diet‐switching of resident omnivorous birds. In addition, phylogenetically closely related species tended to reproduce during the same periods of a year. Neither the mean flowering dates nor seasonal variation in solar radiation, however, was related to the fruit development times. Our results indicate the importance of abiotic, biotic, and evolutionary factors in determining the reproductive phenology in this subtropical forest.  相似文献   

8.
Reproductive isolation is a fundamental requirement for speciation and includes several sequential stages.Few studies have determined the relative contributions of pre-and post-zygotic reproductive isolation in plants,especially between relative species with clear differentiation in flower form.To investigate the mechanisms responsible for reproductive isolation in sympatric Mussaenda pubescens var.alba and Mussaenda shikokiana(Rubiaceae)in Guangxi Province,China,we made observations of flowering phenology,patterns of insect visitation,and conducted pollination experiments,including artificial hybridization.The two species had overlapping flowering times and were pollinated by overlapping pollinators;however,their relative importance differed significantly with M.pubescens visited more commonly by bees and M.shikokiana more frequently by butterflies.Using vegetative and floral characters and molecular evidence based on nuclear ribosomal internal and external transcribed spacer regions we detected seven naturally occurring hybrids among a sample of approximately 125 individuals.Hybrids werecharacterized by morphologies that most closely resembled their maternal parents based on chloroplast evidence.Studies of artificially synthesized and natural hybrids demonstrated that hybrid seed had very low germination rates and naturally occurring hybrids exhibited pollen sterility.Post-zygotic reproductive isolating mechanisms play a primary role in limiting gene exchange between co-occurring species and maintaining species integrity in areas of sympatry.  相似文献   

9.
为揭示不同地区禾本科C3与C4植物花果期受气候因子的影响,以广东省和内蒙古自治区分别代表南亚热带和北温带地区,从植物志中分别获得两地395和265种禾本科草本植物的3个花果期特征(始花期、末花果期和生殖期长),比较开花物候的差异,并通过一般线性模型探究其与气候因子(年均温与年均降水量)的相关性。结果表明,南亚热带与北温带地区C3植物的始花期均比C4植物早。两地C4共有种在南亚热带地区具有更早的始花期、更晚的末花果期和更长的生殖期,而C3共有种的末花果期在两地无显著差异,但在南亚热带地区始花期更早,生殖期更长。随年均温升高,北温带地区禾本科植物的始花期提前,而南亚热带地区则延后;随年均降水量升高,两地禾本科植物始花期与末花果期均延迟;禾本科植物生殖期长与年均温和年均降水量均不存在相关性。跨地区分析表明,末花果期、生殖期长与年均温和年均降水量均正相关,而与始花期不相关。禾本科C3植物比C4植物对地区间气候差异响应更敏...  相似文献   

10.
该研究利用谱系独立比较法(Phylogenetically Independent Contrasts,PIC)和Wilcoxon秩和检验法,分析中国科学院植物研究所植物园(39°54'N,116°12'E)中的84个物种170株个体的传粉方式和果实类型对木本开花时间和结实时间的影响,其中Wilcoxon秩和检验法检验的结果作为PIC检验结果的参考。结果表明:(1)传粉方式显著影响植物开花和结实时间,风媒花植物比虫媒花植物开花和结实早;(2)果实类型对结实时间的影响在考虑和不考虑物种间系统发育关系时表现不同,当不考虑物种间系统发育关系时,肉质果实植物结实时间比非肉质果实植物早;(3)不同的传粉方式间以及不同的果实类型间植物的花果间隙期无显著差异,但本研究结果显示肉质果实植物结实时间比非肉质果实植物大约早20d。由此推论:(1)植物固有属性,如传粉方式和果实类型,会影响植物繁殖物候,且不同的属性影响强度不同;(2)与某一特定物候期或繁殖器官相关性大的属性对该物候期的影响可能更大,如传粉方式对开花时间的影响可能大于其对结实时间的影响,而果实类型对结实物候期的影响更大。  相似文献   

11.
Climate change‐induced shifts in flowering phenology can expose plants to novel biotic and abiotic environments, potentially leading to decreased temporal overlap with pollinators and exposure to conditions that negatively affect fruit and seed set. We explored the relationship between flowering phenology and reproductive output in the common shrub pointleaf manzanita Arctostaphylos pungens in a lower montane habitat in southeastern Arizona, USA. Contrary to the pattern of progressively earlier flowering observed in many species, long‐term records show that A. pungens flowering onset is shifting later and the flowering season is being compressed. This species can thus provide unusual insight into the effects of altered phenology. To determine the consequences of among‐ and within‐plant variation in flowering time, we documented individual flowering schedules and followed the fates of flowers on over 50 plants throughout two seasons (2012 and 2013). We also measured visitation rates by potential pollinators in 2012, as well as both fruit mass and seeds per fruit of flowers produced at different times. Fruit set was positively related to visitation rate but declined with later dates of flower production in both years. Total fruit production per plant was positively influenced by flowering duration, which declined with later flowering onset, as did fruit mass. Individual flowering schedules were consistent between years, suggesting that plants that begin flowering late have lower reproductive output each year. These patterns suggest that if pointleaf manzanita flowering continues to shift later, its flowering season may continue to become shorter, compressing floral resource availability for pollinators and leading to reduced reproductive output. These results reveal the negative effects of delayed phenology on reproductive output in a long‐lived plant. They highlight the value of using natural variation in flowering time, in combination with long‐term data, to anticipate the consequences of phenological shifts.  相似文献   

12.
The reproductive phenology of seven species of Rubiaceae from the Brazilian Atlantic rain forest was compared to evaluate the occurrence of phylogenetic constraints on flowering and fruiting phenologies. Since phenological patterns can be affected by phylogenetic constraints, we expected that reproductive phenology would be similar among plants within a family or genus, occurring during the same time (or season) of the year. Observations on flowering and fruiting phenology were carried out monthly, from December 1996 to January 1998, at Núcleo Picinguaba, Parque Estadual da Serra do Mar, Ubatuba, S?o Paulo State, Brazil. Nine phenological variables were calculated to characterize, quantify and compare the reproductive phenology of the Rubiaceae species. The flowering patterns were different among the seven species studied, and the Kruskal-Wallis test indicated significant differences in flowering duration first flowering, peak flowering and flowering synchrony. The peaks and patterns of fruiting intensity were different among the Rubiaceae species studied and they differed significantly from conspecifics in the phenological variables fruiting duration, fruiting peak date, and fruiting synchrony (Kruskal-Wallis test). Therefore, we found no evidence supporting the phylogenetic hypotheses, and climate does not seem to constrain flowering and fruiting patterns of the Rubiaceae species in the understory of the Atlantic forest.  相似文献   

13.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

14.
Flowering synchrony is essential for plant reproductive success, especially in the case of small‐sized populations of self‐incompatible species. Closely related to synchrony, flowering intensity influences pollinator attraction and pollinator movements. Thus, a high flowering intensity may increase pollinator attraction but, at the same time, may also increase the probability of geitonogamous pollinations. Depending on the mating system, the female fitness of plants in small populations may be affected by both the positive effects of higher flowering synchrony and pollinator attraction and the negative effects of geitonogamous pollinations induced by a high flowering intensity. It was hypothesized that different‐sized plants in a population would show contrasting flowering patterns, resulting in differences in pollinator behaviour. These influences could result in differences in mating and female reproductive success. This hypothesis was tested by studying the flowering pattern of Erodium paularense (Geraniaceae), a rare and endangered endemic of central Spain. The temporal distribution of flower production was explored throughout the reproductive season, and the probability of xenogamy and geitonogamy and their relationship to plant size and fitness components were calculated. The analysis of this partially self‐compatible species showed diverse flowering patterns related to different plant sizes. Small plants produced a larger number of seeds per fruit in spite of having lower values of flowering synchrony. By contrast, large plants produced a larger number of seeds from geitonogamous pollinations. The effect of different flower displays and outcrossing rates on seed set varied throughout the season in the different groups. Our findings highlight the relevance of individual plant size‐dependent phenology on female reproductive success and, in particular, on the relationship between flowering synchrony and fitness. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156 , 227–236.  相似文献   

15.
Slow‐colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large‐scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short‐ and long‐term persistence. We combined transplant experiments along a latitudinal gradient with open‐top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow‐colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e.g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open‐top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.  相似文献   

16.
Summary We investigated inter-specific variation in fruit characteristics — fruit size, seed number per fruit, seed weight, nutritional content, fruit persistence, and fruit synchronization — in relation to flowering and fruiting phenology in 34 species of fleshy fruited plants. Except for aspects of fruit synchrony and persistence, the results in general were inconsistent with previous suggestions about adaptive variation in phenologically related fruit traits. The main results were as follows: (1) Late flowering, late fruiting, lengthy development time from flower to fruit, and highly persistent fruits constitute a complex of correlated characteristics among the species. (2) Synchronization of fruiting within individuals increased from early ripening fruits to late ripening fruits. Fruiting synchrony was more pronounced in species with a small crop size than in species with a large fruit crop, whereas synchrony was not significantly related to flowering synchronization, nor to life form. (3) Nitrogen and carbohydrate content of fruit pulp did not vary in relation to phenology, whereas lipid content decreased from early to late ripening fruits. (4) No seasonal trends were found for variation in seed size or seed number per fruit. (5) Interactions with flowering phenology and developmental constraints are important in phenological fruiting patterns. Temporal variation in start of fruiting was partly (36%) explained by variation in flowering time. Seed weight variation explained 17% of variation in development time from flower to fruit. (6) Despite constraints from flowering and seed development, some adaptive adjustment in fruiting phenology is likely to be allowed for among the investigated species. Such an adaptive variation in fruiting phenology was suggested by intra-generic comparisons of Prunus and Vaccinium species.  相似文献   

17.
Teak is a timber tree that is widely distributed in the tropics. Several studies on pollination and reproductive biology have been conducted, but generally information on flowering phenology and annual variation in total pollen production per tree is lacking. The reproductive phenology as well as flower‐ and pollen grain production of individuals in a population is important to theoreticians, field biologists and plant breeders, as they determine the distribution of genotypes within populations and influences the degree of differentiation among populations. This study reports flowering phenology and variation in total flower, fruit‐ and pollen production per tree in teak in a 25‐year‐old plantation across three consecutive years (2006–2008). The results show that the date of onset and end of flowering was highly variable across years. The longest flowering period of 93 days was observed in 2006. There was an asynchrony in the number of open flowers due to differences in time of anthesis among individuals (± 2 days) and inflorescences within individuals (± 6 h). The production of pollen grains per tree in 2007 was 33%, i.e. 16% more compared to 2006 and 2008. The fruit production per tree was 42% and 27% higher in 2007 compared to 2006 and 2008. Concentration of pollen grains (both on jelly‐coated microscopic slides and stigmas) were highest between noon and 2 pm. At this time, the stigmatic pollen load ranged between 4–8 pollen grains per stigma, which is sufficient for fruit development. The study concludes that the asynchronization of the flower opening might give rise to a high amount of self‐pollination in the stand, ultimately leading to poor fruit setting. Also, the large production of flowers and pollen per tree induced geitonogamy and decreased female fitness, as T. grandis is preferentially an out‐crossing species.  相似文献   

18.
Plant reproductive success is supposedly influenced by phenology and individual size, which may be modified under edge effects. We tested if reproductive success, estimated by fruit set, in Senefeldera verticillata (Euphorbiaceae) is related to flowering synchrony and tree size, including plant height and circumference at breast height. The study was carried out in the interior and in edges of clearings for gas pipelines and electric lines of a lowland rainforest in south‐eastern Brazil. Monthly observations were performed during one reproductive season, of 19 individuals that grew at edges of electric lines and gas pipelines and at forest interior. Reproductive success was significantly higher at forest interior than at gas pipeline area; there was no significant difference between gas pipeline and electric line areas or between forest interior and electric line area. In the forest edges, only plant height was positively related to plant reproductive success. This is probably related to crown exposure to sunlight, which enhances flower production. At forest interior, reproductive success was positively influenced by the synchrony of flowering activity among neighbouring individuals. In contrast, flowering synchrony based on phenophase intensity negatively impacted reproductive success. Senefeldera verticillata shows temporal dioecy and is mainly pollinated by small social bees, and the high degree of flowering synchrony at low intensity may increase the number of mating partners and therefore enhance its reproductive success. Inside the forest fragments, individuals with thicker trunks showed lower reproductive success, which may be related to a loss of reproductive capacity of older individuals. Our results evidenced the complexity of responses experienced by tropical plants subjected to forest fragmentation because of linear clearings.  相似文献   

19.
Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.  相似文献   

20.
Gabriela S. Adamescu  Andrew J. Plumptre  Katharine A. Abernethy  Leo Polansky  Emma R. Bush  Colin A. Chapman  Luke P. Shoo  Adeline Fayolle  Karline R. L. Janmaat  Martha M. Robbins  Henry J. Ndangalasi  Norbert J. Cordeiro  Ian C. Gilby  Roman M. Wittig  Thomas Breuer  Mireille Breuer‐Ndoundou Hockemba  Crickette M. Sanz  David B. Morgan  Anne E. Pusey  Badru Mugerwa  Baraka Gilagiza  Caroline Tutin  Corneille E. N. Ewango  Douglas Sheil  Edmond Dimoto  Fidèle Baya  Flort Bujo  Fredrick Ssali  Jean‐Thoussaint Dikangadissi  Kathryn Jeffery  Kim Valenta  Lee White  Michel Masozera  Michael L. Wilson  Robert Bitariho  Sydney T. Ndolo Ebika  Sylvie Gourlet‐Fleury  Felix Mulindahabi  Colin M. Beale 《Biotropica》2018,50(3):418-430
We present the first cross‐continental comparison of the flowering and fruiting phenology of tropical forests across Africa. Flowering events of 5446 trees from 196 species across 12 sites and fruiting events of 4595 trees from 191 species across 11 sites were monitored over periods of 6 to 29 years and analyzed to describe phenology at the continental level. To study phenology, we used Fourier analysis to identify the dominant cycles of flowering and fruiting for each individual tree and we identified the time of year African trees bloom and bear fruit and their relationship to local seasonality. Reproductive strategies were diverse, and no single regular cycle was found in >50% of individuals across all 12 sites. Additionally, we found annual flowering and fruiting cycles to be the most common. Sub‐annual cycles were the next most common for flowering, whereas supra‐annual patterns were the next most common for fruiting. We also identify variation in different subsets of species, with species exhibiting mainly annual cycles most common in West and West Central African tropical forests, while more species at sites in East Central and East African forests showed cycles ranging from sub‐annual to supra‐annual. Despite many trees showing strong seasonality, at most sites some flowering and fruiting occurred all year round. Environmental factors with annual cycles are likely to be important drivers of seasonal periodicity in trees across Africa, but proximate triggers are unlikely to be constant across the continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号