首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C-reactive protein (CRP), an acute-phase protein with an ability to bind to nuclear antigen, has been reported to regulate cytokine secretion and modulate immune responses. We previously reported that activated syngeneic lymphocyte-derived apoptotic DNA (apopDNA) could induce macrophage activation and contribute to the initiation and progression of lupus nephritis. It is reasonable to hypothesize that CRP might regulate apopDNA-induced macrophage activation. Herein, CRP was shown to promote macrophage-mediated apopDNA uptake by binding to apopDNA (CRP/apopDNA complex). Notably, CRP/apopDNA treatment inhibited the production of inflammatory cytokines and chemokines by macrophages which could be induced by apopDNA alone. Further coculture and transwell studies revealed that CRP/apopDNA-induced macrophages prohibited apopDNA-induced macrophage activation in an IL-10 dependent manner. These results provide insight into the potential mechanism of CRP regulatory activity in macrophage activation induced by apopDNA in the context of lupus nephritis and other autoimmune diseases.  相似文献   

3.
Macrophages as a principal component of immune system play an important role in the initiation, modulation, and final activation of the immune response against pathogens. Upon stimulation with different cytokines, macrophages can undergo classical or alternative activation to become M1 or M2 macrophages, which have different functions during infections. Although chitotriosidase is widely accepted as a marker of activated macrophages and is thought to participate in innate immunity, particularly in defense mechanisms against chitin containing pathogens, little is known about its expression during macrophages full maturation and polarization. In this study we analyzed CHIT-1 modulation during monocyte-to-macrophage maturation and during their polarization. The levels of CHIT-1 expression was investigated in human monocytes obtained from buffy coat of healthy volunteers, polarized to classically activated macrophages (or M1), whose prototypical activating stimuli are interferon-γ and lipopolysaccharide, and alternatively activated macrophages (or M2) obtained by interleukin-4 exposure by real-time PCR and by Western blot analysis. During monocyte–macrophage differentiation both protein synthesis and mRNA analysis showed that CHIT-1 rises significantly and is modulated in M1 and M2 macrophages.Our results demonstrated that variations of CHIT-1 production are strikingly associated with macrophages polarization, indicating a different rule of this enzyme in the specialized macrophages.  相似文献   

4.
5.
Macrophage differentiation and polarization is influenced by, and act on, many processes associated with autoimmunity. However, the molecular mechanisms underlying macrophage polarization in systemic lupus erythematosus (SLE) remain largely debated. We previously demonstrated that macrophage M2b polarization conferred by activated lymphocyte-derived (ALD)-DNA immunization could initiate and propagate murine lupus nephritis. Serum amyloid P component (SAP), a conserved acute-phase protein in mice, has been reported to bind to DNA and modulate immune responses. In this study, murine SAP was shown to promote macrophage-mediated ALD-DNA uptake through binding to ALD-DNA (SAP/ALD-DNA). Moreover, macrophage phenotypic switch from a proinflammatory M2b phenotype induced by ALD-DNA alone to an anti-inflammatory M2a phenotype stimulated with SAP/ALD-DNA were found because of PI3K/Akt-ERK signaling activation. Both in vivo SAP supplements and adoptive transfer of ex vivo programmed M2a macrophages induced by SAP/ALD-DNA into SLE mice could efficiently alleviate lupus nephritis. Importantly, increased IL-10 secretion, accompanied by anti-inflammatory effect exerted by M2a macrophages, was found to predominantly impede macrophage M2b polarization. Furthermore, neutralization of IL-10 notably reduced the suppressive effect of M2a macrophages. Our results demonstrate that binding of SAP to ALD-DNA could switch macrophage phenotypic polarization from proinflammatory M2b to anti-inflammatory M2a via PI3K/Akt-ERK signaling activation, thus exerting protective and therapeutic interventions on murine lupus nephritis. These data provide a possible molecular mechanism responsible for modulation of macrophage polarization in the context of lupus nephritis and open a new potential therapeutic avenue for SLE.  相似文献   

6.
Pidotimod is a synthetic dipeptide with biological and immunological activity in innate immune responses. It has been reported that pidotimod could promote functional maturation of dendritic cells, but little is known about the regulation of macrophages. Recent studies have demonstrated that M1 or M2 polarized macrophages are of great importance for responses to microorganism infection or host mediators. The aim of this study was to determine the effectiveness of pidotimod on mouse bone marrow-derived macrophage polarization and its function. The results showed that pidotimod had no influence on M1-polarized macrophage. While interestingly, a significant increase of M2 marker gene expression (Arg1, Fizz1, Ym1, MR) was observed (p < 0.01) in IL-4-induced M2 macrophage treated with pidotimod. In addition, cell surface expression of mannose receptor was dramatically enhanced using fluorescence activated cell sorter (FACS) analysis. Furthermore, the function of M2 macrophage was also determinated. The results showed that the supernatant of pidotimod-treated M2 macrophage could increase the migration (p < 0.05) and enhance the wound closure rate (p < 0.05) of MLE-12 cells. Collectively, it could be concluded that pidotimod significantly facilitated IL-4-induced M2 macrophage polarization and improves its function.  相似文献   

7.
Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.  相似文献   

8.
The persistent activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) triggered by mucosal stress has been linked to deregulation of the gut immune response resulting in intestinal inflammation and cell death. The present study investigated the regulatory properties of food-derived mTORC1 modulators, curcumin, and piperine, toward the polarization of stimulated macrophages and the differentiation of monocytes at two mTORC1 activity levels (baseline and elevated). To that end, we created stable human THP-1 monocytes exhibiting normal or constitutively active mTORC1. Curcumin or its combination with piperine, but not piperine alone, suppressed mTORC1 kinase activity, curtailed lipopolysaccharide-mediated inflammatory response of THP-1 macrophages, and repressed macrophage activation by inhibiting signaling pathways involved in M1 (mTORC1) and M2 (mTORC2 and cAMP response element binding protein) polarization. The effects of piperine in the curcumin/piperine combination were modest overall, indicating it was curcumin that modulated differentiating monocytes into acquiring a M0 macrophage phenotype characterized by low inflammatory cytokine output.  相似文献   

9.
C-C chemokine receptor 2 (Ccr2) is a key pro-inflammatory marker of classic (M1) macrophage activation. Although Ccr2 is known to be expressed both constitutively and inductively, the full regulatory mechanism of its expression remains unclear. AMP-activated protein kinase (AMPK) is not only a master regulator of energy homeostasis but also a central regulator of inflammation. In this study, we sought to assess AMPK’s role in regulating RAW264.7 macrophage Ccr2 protein levels in resting (M0) or LPS-induced M1 states. In both M0 and M1 RAW264.7 macrophages, knockdown of the AMPKα1 subunit by siRNA led to increased Ccr2 levels whereas pharmacologic (A769662) activation of AMPK, attenuated LPS-induced increases in Ccr2 expression in an AMPK dependent fashion. The increases in Ccr2 levels by AMPK downregulation were partially reversed by NF-κB inhibition whereas TNF-a inhibition had minimal effects. Our results indicate that AMPK is a negative regulator of Ccr2 expression in RAW264.7 macrophages, and that the mechanism of action of AMPK inhibition of Ccr2 is mediated, in part, through the NF-κB pathway.  相似文献   

10.
11.
Our group have demonstrated that splenic B cells contributed to the CD4+CD25 naive T cells conversion into CD4+CD25+Foxp3 regulatory T cells without adding appended cytokines, named Treg-of-B cells which were potent suppressors of adaptive immunity. We like to investigate whether Treg-of-B cells could promote alternatively activated macrophage (M2 macrophages) polarization and alleviate inflammatory disease, psoriasis. In this study, we co-cultured the bone marrow-derived macrophages (BMDMs) with Treg-of-B cells under LPS/IFN-γ stimulation and analyzed the M2-associated gene and protein using qPCR, western blotting, and immunofluorescence staining. We also examined the therapeutic effect of Treg-of-B cell-induced M2 macrophage for skin inflammation using imiquimod (IMQ)-induced psoriatic mouse model. Our results showed that BMDMs co-cultured with Treg-of-B cells upregulated typical M2-associated molecules, including Arg-1, IL-10, Pdcd1lg2, MGL-1, IL-4, YM1/2 and CD206. In an inflammatory environment, TNF-α and IL-6 production by macrophages co-cultured with Treg-of-B cells was decreased significantly. The molecular mechanism revealed that Treg-of-B cells promoted M2 macrophage polarization via STAT6 activation in a cell contact-dependent manner. Moreover, the treatment with Treg-of-B cell-induced M2 macrophages attenuated the clinical manifestations of psoriasis, such as scaling, erythema and thickening in the IMQ-induced psoriatic mouse model. T cell activation in draining lymph nodes was decreased in the Treg-of-B cell-induced M2 macrophage group after IMQ application. In conclusion, our findings suggested that Foxp3 Treg-of-B cells could induce alternatively activated M2 macrophages through STAT6 activation, providing a cell-based therapeutic strategy for psoriasis.  相似文献   

12.
Angiopoietin-1 (Ang1) is a ligand for the endothelial-specific tyrosine kinase receptor Tie2 and has been shown to play an essential role in embryonic vasculature development. There have been many studies about the anti-inflammatory effects of Ang1, most of which focus on endothelium cells. In the present study, we explore the role of Ang1-Tie2 signaling in the activation of macrophages upon lipopolysaccharide (LPS) stimulation. We found that Tie2 receptor is expressed on macrophages and Ang1 could inhibit LPS-induced activation of macrophages, as evidenced by cell migration and TNF-α production, specifically through Tie2 receptor. We further investigated the mechanism and found that Ang1-Tie2 could block LPS-induced activation of NF-κB which has been shown to be necessary for macrophage activation with LPS treatment. Thus, we described, for the first time, the role of Ang1-Tie2 signaling in macrophage activation and the possible mechanisms in response to immune stimulation.  相似文献   

13.
The polarization of adipose tissue-resident macrophages toward the alternatively activated, anti-inflammatory M2 phenotype is believed to improve insulin sensitivity. However, the mechanisms controlling tissue macrophage activation remain unclear. Here we show that adipocytes are a source of Th2 cytokines, including IL-13 and to a lesser extent IL-4, which induce macrophage PPARdelta/beta (Ppard/b) expression through a STAT6 binding site on its promoter to activate alternative activation. Coculture studies indicate that Ppard ablation renders macrophages incapable of transition to the M2 phenotype, which in turns causes inflammation and metabolic derangement in adipocytes. Remarkably, a similar regulatory mechanism by hepatocyte-derived Th2 cytokines and macrophage PPARdelta is found to control hepatic lipid metabolism. The physiological relevance of this paracrine pathway is demonstrated in myeloid-specific PPARdelta(-/-) mice, which develop insulin resistance and show increased adipocyte lipolysis and severe hepatosteatosis. These findings provide a molecular basis to modulate tissue-resident macrophage activation and insulin sensitivity.  相似文献   

14.
Liver fibrogenesis is a dynamic cellular and tissue process which has the potential to progress into cirrhosis of even liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central event underlying liver fibrosis. Besides, hepatic macrophages have been proposed as potential targets in combatting fibrosis. As for the relationship between HSCs and hepatic macrophages in liver fibrosis, it is generally considered that macrophages promoted liver fibrosis via activating HSCs. However, whether activated HSCs could in turn affect macrophage polarization has rarely been studied. In this study, mRNAs with significant differences were explored using exosomal RNA-sequencing of activated Lx-2 cells and normal RNA-sequencing of DHFR loss-of-function Lx-2 cell models. Cell functional experiments in both Lx-2 cells and macrophages animal model experiments were performed. The results basically confirmed exosomes secreted from activated HSCs could promote M1 polarization of macrophages further. Exosome harbouring DHFR played an important role in this process. DHFR silence in HSCs could decrease Lx-2 activation and M1 polarization of M0 macrophages and then alleviate the development of liver fibrosis both in vitro and vivo. Our work brought a new insight that exosomal DHFR derived from HSCs had a crucial role in crosstalk between HSCs activation and macrophage polarization, which may be a potential therapeutic target in liver fibrosis.  相似文献   

15.
MiR‐16 is a tumour suppressor that is down‐regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR‐16 on macrophage polarization and subsequent T‐cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon‐γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)‐4. The identity of polarized macrophages was determined by profiling cell‐surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus‐expressing miR‐16 to assess the effects of miR‐16. Effects on macrophage–T cell interactions were analysed by co‐culturing purified CD4+ T cells with miR‐16‐expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR‐16 targets and understand its underlying mechanisms. MiR‐16‐induced M1 differentiation of mouse peritoneal macrophages from either the basal M0‐ or M2‐polarized state is indicated by the significant up‐regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin‐1, and increased secretion of M1 cytokine IL‐12 and nitric oxide. Consistently, miR‐16‐expressing macrophages stimulate the activation of purified CD4+ T cells. Mechanistically, miR‐16 significantly down‐regulates the expression of PD‐L1, a critical immune suppressor that controls macrophage–T cell interaction and T‐cell activation. MiR‐16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4+ T cells. This effect is potentially mediated through the down‐regulation of immune suppressor PD‐L1.  相似文献   

16.

Background and Aims

Systemic inflammatory response syndrome (SIRS), a major process of severe acute pancreatitis (SAP), usually occurs after various activated proinflammatory cytokines, which are produced by macrophages such as liver macrophages. Macrophages can secrete not only proinflammatory mediators but also inhibitory inflammatory cytokines such as IL-10, leading to two different functional states defined as “polarization”. The main purpose of this study was to demonstrate the polarization of liver macrophages during severe acute pancreatitis and to explore whether the polarization of these activated Liver macrophages could be reversed in vitro.

Methods

Liver macrophages were isolated from rats with acute pancreatitis. These primary culture macrophages were treated with IL-4 or regulatory T cells in vitro to reverse their polarization and was evaluated by measuring M1/M2 marker expression using real time PCR and immunofluorescence staining.

Results

Acute pancreatitis was induced successfully by intra-pancreatic ductal injection of 5% sodium taurocholate. The liver macrophages demonstrated M1 polarization from 4 h to 16 h after the onset of acute pancreatitis. However, after IL-4 or Treg treatment, the polarization of the liver macrophages was reversed as indicated by increased expression of M2 markers and reduced expression of M1 markers. Furthermore, the effect of Treg on modulating macrophage polarization was slightly better than that of IL-4 in vitro.

Conclusion

Liver macrophages, a pivotal cell type in the pathogenesis of SAP, become M1 polarized during pancreatic inflammation. Treatment of these cells with IL-4 and Treg can reverse this activation in vitro. This method of altering macrophage polarization could be a prospective therapy for SAP.  相似文献   

17.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro-inflammatory and pro-adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN-KO) mice and cultured macrophages. It was found that FKN and Wnt/β-catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS-induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β-catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β-catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS-induced AKI. Although LPS-induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β-catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

18.
Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response. TNFalpha plays a key role in inflammatory disease; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that, in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.  相似文献   

19.
Macrophages play crucial role in tissue homeostasis and the innate and adaptive immune response. Depending on the state of activation macrophages acquire distinct phenotypes that depend on actin, which is regulated by small GTPase RhoA. The naive M0 macrophages are slightly elongated, pro-inflammatory M1 are round and M2 anti-inflammatory macrophages are elongated. We showed previously that interference with RhoA pathway (RhoA deletion or RhoA/ROCK kinase inhibition) disrupted actin, produced extremely elongated (hummingbird) macrophage phenotype and inhibited macrophage movement toward transplanted hearts. The RhoA function depends on the family of guanine-nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP and activate RhoA that reorganizes actin cytoskeleton. Using actin staining, immunostaining, Western blotting, flow cytometry and transmission electron microscopy we studied how a direct inhibition of Rho-GEFs with Rhosin (Rho GEF-binding domain blocker) and Y16 (Rho GEF DH-PH domain blocker) affects M0, M1 and M2 macrophage phenotypes. We also studied how Rho-GEFs inhibition and RhoA deletion affects organization of Golgi complex that is crucial for normal macrophage functions such as phagocytosis, antigen presentation and receptor recycling. We found that GEFs inhibition differently affected M0, M1 and M2 macrophages phenotype and that GEFs inhibition and RhoA deletion both caused changes in the ultrastructure of the Golgi complex. These results suggest that actin/RhoA- dependent shaping of macrophage phenotype has different requirements for activity of RhoA/GEFs pathway in M0, M1 and M2 macrophages, and that RhoA and Rho-GEFs functions are necessary for the maintenance of actin-dependent organization of Golgi complex.  相似文献   

20.
After activation with IFN-gamma, thioglycollate-elicited murine peritoneal macrophages kill schistosomula of Schistosoma mansoni in vitro by an L-arginine-dependent mechanism which involves the production of reactive nitrogen oxides (NO). In the present study we demonstrate that the regulatory cytokines IL-10, IL-4, and transforming growth factor-beta (TGF-beta) are potent inhibitors of this extracellular killing function of activated macrophages. Each cytokine was found to suppress killing of schistosomula in a dose-dependent fashion. The activity of IL-10 was not permanent, because subsequent treatment with additional IFN-gamma 2 to 6 h later reversed the inhibition of macrophage larval killing. More importantly, the combination of suboptimal levels of any two of these three cytokines was found to give a potent synergistic suppression of schistosomulum killing by IFN-gamma-treated macrophages. Similarly, IL-10, IL-4, or TGF-beta alone blocked the production of NO, and when used in combination these cytokines exhibited an enhanced inhibitory effect on nitrite production. Macrophage-mediated killing of schistosomula through the generation of NO has been shown previously to be a major effector mechanism of schistosome immunity. The results presented here suggest that the suppression of this mechanism by induction of the regulatory cytokines IL-10, IL-4, and TGF-beta, which are known to be produced during schistosome infection, may be an important strategy used by the parasite to evade macrophage-mediated immune destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号