首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio‐demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the role of different factors contributing to the emergence and spread of this catastrophic disease.  相似文献   

3.
One of the most devastating emerging pathogens of wildlife is the chytrid fungus, Batrachochytrium dendrobatidis (Bd), which affects hundreds of amphibian species around the world. Genomic data from pure Bd cultures have advanced our understanding of Bd phylogenetics, genomic architecture and mechanisms of virulence. However, pure cultures are laborious to obtain and whole‐genome sequencing is comparatively expensive, so relatively few isolates have been genetically characterized. Thus, we still know little about the genetic diversity of Bd in natural systems. The most common noninvasive method of sampling Bd from natural populations is to swab amphibian skin. Hundreds of thousands of swabs have been collected from amphibians around the world, but Bd DNA collected via swabs is often low in quality and/or quantity. In this study, we developed a custom Bd genotyping assay using the Fluidigm Access Array platform to amplify 192 carefully selected regions of the Bd genome. We obtained robust sequence data for pure Bd cultures and field‐collected skin swabs. This new assay has the power to accurately discriminate among the major Bd clades, recovering the basic tree topology previously revealed using whole‐genome data. Additionally, we established a critical value for initial Bd load for swab samples (150 Bd genomic equivalents) above which our assay performs well. By leveraging advances in microfluidic multiplex PCR technology and the globally distributed resource of amphibian swab samples, noninvasive skin swabs can now be used to address critical spatial and temporal questions about Bd and its effects on declining amphibian populations.  相似文献   

4.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is the emerging infectious disease implicated in recent population declines and extinctions of amphibian species worldwide. Bd strains from regions of disease‐associated amphibian decline to date have all belonged to a single, hypervirulent clonal genotype (Bd‐GPL). However, earlier studies in the Atlantic Forest of southeastern Brazil detected a novel, putatively enzootic lineage (Bd‐Brazil), and indicated hybridization between Bd‐GPL and Bd‐Brazil. Here, we characterize the spatial distribution and population history of these sympatric lineages in the Brazilian Atlantic Forest. To investigate the genetic structure of Bd in this region, we collected and genotyped Bd strains along a 2400‐km transect of the Atlantic Forest. Bd‐Brazil genotypes were restricted to a narrow geographic range in the southern Atlantic Forest, while Bd‐GPL strains were widespread and largely geographically unstructured. Bd population genetics in this region support the hypothesis that the recently discovered Brazilian lineage is enzootic in the Atlantic Forest of Brazil and that Bd‐GPL is a more recently expanded invasive. We collected additional hybrid isolates that demonstrate the recurrence of hybridization between panzootic and enzootic lineages, thereby confirming the existence of a hybrid zone in the Serra da Graciosa mountain range of Paraná State. Our field observations suggest that Bd‐GPL may be more infective towards native Brazilian amphibians, and potentially more effective at dispersing across a fragmented landscape. We also provide further evidence of pathogen translocations mediated by the Brazilian ranaculture industry with implications for regulations and policies on global amphibian trade.  相似文献   

5.
Symbiotic bacterial communities can protect their hosts from infection by pathogens. Treatment of wild individuals with protective bacteria (probiotics) isolated from hosts can combat the spread of emerging infectious diseases. However, it is unclear whether candidate probiotic bacteria can offer consistent protection across multiple isolates of globally distributed pathogens. Here, we use the lethal amphibian fungal pathogen Batrachochytrium dendrobatidis to investigate whether probiotic richness (number of bacteria) or genetic distance among consortia members influences broad‐scale in vitro inhibitory capabilities of probiotics across multiple isolates of the pathogen. We show that inhibition of multiple pathogen isolates by individual bacteria is rare, with no systematic pattern among bacterial genera in ability to inhibit multiple B. dendrobatidis isolates. Bacterial consortia can offer stronger protection against B. dendrobatidis compared to single strains, and this tended to be more pronounced for consortia containing multiple genera compared with those consisting of bacteria from a single genus (i.e., with lower genetic distance), but critically, this effect was not uniform across all B. dendrobatidis isolates. These novel insights have important implications for the effective design of bacterial probiotics to mitigate emerging infectious diseases.  相似文献   

6.
Understanding factors that influence host–pathogen interactions is key to predicting outbreaks in natural systems experiencing environmental change. Many amphibian population declines have been attributed to an amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). While this fungus is widespread, not all Bd‐positive populations have been associated with declines, which could be attributed to differences in pathogen virulence or host susceptibility. In a laboratory experiment, we examined the effects of Bd isolate origin, two from areas with Bd‐associated amphibian population declines (El Copé, Panama, and California, USA) and two from areas without Bd‐related population declines (Ohio and Maine, USA), on the terrestrial growth and survival of American toad (Anaxyrus americanus) metamorphs reared in larval environments with low or high intraspecific density. We predicted that (1) Bd isolates from areas experiencing declines would have greater negative effects than Bd isolates from areas without declines, and (2) across all isolates, growth and survival of smaller toads from high‐density larval conditions would be reduced by Bd exposure compared to larger toads from low‐density larval conditions. Our results showed that terrestrial survival was reduced for smaller toads exposed to Bd with variation in the response to different isolates, suggesting that smaller size increased susceptibility to Bd. Toads exposed to Bd gained less mass, which varied by isolate. Bd isolates from areas with population declines, however, did not have more negative effects than isolates from areas without recorded declines. Most strikingly, our study supports that host condition, measured by size, can be indicative of the negative effects of Bd exposure. Further, Bd isolates’ impact may vary in ways not predictable from place of origin or occurrence of disease‐related population declines. This research suggests that amphibian populations outside of areas experiencing Bd‐associated declines could be impacted by this pathogen and that the size of individuals could influence the magnitude of Bd's impact.  相似文献   

7.
While disease‐induced extinction is generally considered rare, a number of recently emerging infectious diseases with load‐dependent pathology have led to extinction in wildlife populations. Transmission is a critical factor affecting disease‐induced extinction, but the relative importance of transmission compared to load‐dependent host resistance and tolerance is currently unknown. Using a combination of models and experiments on an amphibian species suffering extirpations from the fungal pathogen Batrachochytrium dendrobatidis (Bd), we show that while transmission from an environmental Bd reservoir increased the ability of Bd to invade an amphibian population and the extinction risk of that population, Bd‐induced extinction dynamics were far more sensitive to host resistance and tolerance than to Bd transmission. We demonstrate that this is a general result for load‐dependent pathogens, where non‐linear resistance and tolerance functions can interact such that small changes in these functions lead to drastic changes in extinction dynamics.  相似文献   

8.
Probiotic therapy through bioaugmentation is a feasible disease mitigation strategy based on growing evidence that microbes contribute to host defences of plants and animals. Amphibians are currently threatened by the rapid global spread of the pathogen, Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis. Bioaugmentation of locally occurring protective bacteria on amphibians has mitigated this disease effectively in laboratory trials and one recent field trial. Areas still naïve to Bd provide an opportunity for conservationists to proactively implement probiotic strategies to prevent further amphibian declines. In areas where Bd is endemic, bioaugmentation can facilitate repatriation of susceptible amphibians currently maintained in assurance colonies. Here, we synthesise the current research in amphibian microbial ecology and bioaugmentation to identify characteristics of effective probiotics in relation to their interactions with Bd, their host, other resident microbes and the environment. To target at‐risk species and amphibian communities, we develop sampling strategies and filtering protocols that result in probiotics that inhibit Bd under ecologically relevant conditions and persist on susceptible amphibians. This filtering tool can be used proactively to guide amphibian disease mitigation and can be extended to other taxa threatened by emerging infectious diseases.  相似文献   

9.
Global climate change is increasing the frequency of unpredictable weather conditions; however, it remains unclear how species‐level and geographic factors, including body size and latitude, moderate impacts of unusually warm or cool temperatures on disease. Because larger and lower‐latitude hosts generally have slower acclimation times than smaller and higher‐latitude hosts, we hypothesised that their disease susceptibility increases under ‘thermal mismatches’ or differences between baseline climate and the temperature during surveying for disease. Here, we examined how thermal mismatches interact with body size, life stage, habitat, latitude, elevation, phylogeny and International Union for Conservation of Nature (IUCN) conservation status to predict infection prevalence of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a global analysis of 32 291 amphibian hosts. As hypothesised, we found that the susceptibility of larger hosts and hosts from lower latitudes to Bd was influenced by thermal mismatches. Furthermore, hosts of conservation concern were more susceptible than others following thermal mismatches, suggesting that thermal mismatches might have contributed to recent amphibian declines.  相似文献   

10.

Aim

Accurately documenting and predicting declines and shifts in species’ distributions is fundamental for implementing effective conservation strategies and directing future research; species distribution models (SDM) have become a powerful tool for such work. Nevertheless, much of the data used to create these models are opportunistic and often violate some of their basic assumptions. We use amphibian declines and extinctions linked to the fungus Batrachochytrium dendrobatidis (Bd) to examine how sampling biases in data collection can affect what we know of this disease and its effect on amphibians in the wild.

Location

Queensland, Australia.

Methods

We developed a distribution model for Bd incorporating known locality records for Bd and a subset of climatic variables that should correctly characterize its distribution. We tested this (original) model with additional surveys, recorded new Bd observations in novel environments and reran the distribution model. We then investigated the difference between the original and new models, and used frog abundance and infection status data from two of these new localities to look at the susceptibility of the torrent frog Litoria nannotis to chytridiomycosis.

Results

While largely correct, the original SDM underestimated the distribution of Bd; sampling in ‘unsuitable’ drier environments discovered abundant populations of susceptible frogs with pathogen prevalences of up to 100%. The validation surveys further uncovered a new population of the frog Litoria lorica coexisting with the pathogen; this species was previously believed to be an extinct rain forest endemic.

Main conclusion

Our results indicate that SDMs constructed using opportunistically collected data can be biased if species are not at equilibrium with their environment or because environmental gradients have not been adequately sampled. For disease ecology, the better estimations of pathogen distribution may lead to the discovery of new populations persisting at the edge of their range, which has important implications for the conservation of species threatened by chytridiomycosis.
  相似文献   

11.
Aim Rapidly evolving pathogens may exert diversifying selection on genes involved in host immune defence including those encoding antimicrobial peptides (AMPs). Amphibian skin peptides are one important defence against chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). We examined the population‐level variation in this innate immune defence to understand its relationship with disease dynamics. Location Queensland, Australia. Methods We examined skin peptide defences in five geographically distinct populations of Australian green‐eyed treefrogs, Litoria genimaculata. Skin peptide samples were collected from 52 frogs from three upland populations that previously declined as chytridiomycosis emerged, but subsequently recovered, and from 34 frogs in two lowland populations that did not decline. Historical samples of skin peptides preceding Bd emergence were not available from any population. Results In general, lowland populations had more effective peptide defences than upland populations. Peptide profiles were similar among populations, although relative amounts of peptides expressed differed significantly among populations and were more variable in the uplands. Infected frogs in upland populations carried a significantly higher infection burden compared to lowland populations. The presence of effective AMPs in the skin of L. genimaculata does not eliminate infection; however, more effective peptide defences may limit infection intensity and the progression of disease. Main conclusions The population bottleneck in upland populations caused by chytridiomycosis emergence did not appear to produce responses to selection for more effective peptide defences against chytridiomycosis compared to lowland populations of L. genimaculata. This does not exclude the possibility that current peptide defences have adapted in response to disease emergence. A suggestive (P < 0.10) interaction between infection status and population indicates that in lowland populations, infected individuals tend to be those with lower relative intensities of AMPs, whereas in the upland populations, infected and uninfected individuals are similar. Thus, both the AMPs and the environment may act to mediate resistance to Bd infection.  相似文献   

12.
Numerous species of amphibians declined in Central America during the 1980s and 1990s. These declines mostly affected highland stream amphibians and have been primarily linked to chytridiomycosis, a deadly disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). Since then, the majority of field studies on Bd in the Tropics have been conducted in midland and highland environments (>800 m) mainly because the environmental conditions of mountain ranges match the range of ideal abiotic conditions for Bd in the laboratory. This unbalanced sampling has led researchers to largely overlook host–pathogen dynamics in lowlands, where other amphibian species declined during the same period. We conducted a survey testing for Bd in 47 species (n = 348) in four lowland sites in Costa Rica to identify local host–pathogen dynamics and to describe the abiotic environment of these sites. We detected Bd in three sampling sites and 70% of the surveyed species. We found evidence that lowland study sites exhibit enzootic dynamics with low infection intensity and moderate to high prevalence (55% overall prevalence). Additionally, we found evidence that every study site represents an independent climatic zone, where local climatic differences may explain variations in Bd disease dynamics. We recommend more detection surveys across lowlands and other sites that have been historically considered unsuitable for Bd occurrence. These data can be used to identify sites for potential disease outbreaks and amphibian rediscoveries.  相似文献   

13.
14.
While epizootics increasingly affect wildlife, it remains poorly understood how the environment shapes most host–pathogen systems. Here, we employ a three‐step framework to study microclimate influence on ectotherm host thermal behaviour, focusing on amphibian chytridiomycosis in fire salamanders (Salamandra salamandra) infected with the fungal pathogen Batrachochytrium salamandrivorans (Bsal). Laboratory trials reveal that innate variation in thermal preference, rather than behavioural fever, can inhibit infection and facilitate salamander recovery under humidity‐saturated conditions. Yet, a 3‐year field study and a mesocosm experiment close to the invasive Bsal range show that microclimate constraints suppress host thermal behaviour favourable to disease control. A final mechanistic model, that estimates range‐wide, year‐round host body temperature relative to microclimate, suggests that these constraints are rule rather than exception. Our results demonstrate how innate host defences against epizootics may remain constrained in the wild, which predisposes to range‐wide disease outbreaks and population declines.  相似文献   

15.
As globalization lowers geographic barriers to movement, coinfection with novel and enzootic pathogens is increasingly likely. Novel and enzootic pathogens can interact synergistically or antagonistically, leading to increased or decreased disease severity. Here we examine host immune responses to coinfection with two closely related fungal pathogens: Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Both pathogens have had detrimental effects on amphibian populations, with Bd now largely enzootic, while Bsal is currently spreading and causing epizootics. Recent experimental work revealed that newts coinfected with Bd and Bsal had significantly higher mortality than those infected with either pathogen alone. Here we characterize host immunogenomic responses to chytrid coinfection relative to single infection. Across several classes of immune genes including pattern recognition receptors, cytokines, and MHC, coinfected host gene expression was weakly upregulated or comparable to that seen in single Bd infection, but significantly decreased when compared to Bsal infection. Combined with strong complement pathway downregulation and keratin upregulation, these results indicate that coinfection with Bd and Bsal compromises immune responses active against Bsal alone. As Bsal continues to invade naïve habitats where Bd is enzootic, coinfection will be increasingly common. If other Bd‐susceptible species in the region have similar responses, interactions between the two pathogens could cause severe population and community‐level declines.  相似文献   

16.
17.
Globally, numerous amphibian species have declined due to the introduction of the chytrid fungus Batrachochytrium dendrobatidis (Bd). However, the understanding of the spatiotemporal dynamics remains incomplete. Therefore, estimating the current geographic distribution of Bd is urgently needed, especially in countries like Costa Rica, where susceptible species are still recovering from Bd‐driven declines. We conducted model tuning and spatial analysis to compare the habitat suitability for epizootic and enzootic Bd in Costa Rica and to identify data‐deficient regions, opportunistic sampling, and Bd hotspots. Our dataset combined two methods of detection (histology and PCR methods) for a total of 451 Bd‐positive records from 34 localities. We found that the distribution of enzootic Bd in Costa Rica increased 60% since previous estimates in the early 2000s and extended to highlands and dry lowlands that were considered unsuitable for Bd. We also found that Bd is common across protected lands (80%) and within the herpetological provinces containing the highest amphibian richness and endemism in Costa Rica. Opportunistic sampling of Bd has focused on sites where epizootics occurred with the strongest intensity, leading to deficient or absent sampling across the Talamanca Range, the Nicoya Peninsula, and the northern lowlands. Our results showed that PCR increased the power of Bd detection in lowlands and favored the identification of Bd hotspots across the Caribbean side of Costa Rica. Our results add to the understanding of disease spread during enzootics and can be used to identify new hotspots for disease to mitigate future outbreaks of this pathogen. Abstract in Spanish is available with online material  相似文献   

18.
Chytridiomycosis is an amphibian disease of global conservation concern that is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Since the discovery of Bd in 1998, several methods have been used for detection of Bd; among these polymerase chain reaction (PCR) from skin swabs is accepted as the best method due to its noninvasiveness, high sensitivity and ease of use. However, PCR is not without problems – to be successful, this technique is dependent upon the presence of nondegraded DNA template and reaction contents that are free from inhibitors. Here, we report on an investigation of several techniques aimed at improving the reliability of the Bd PCR assay by minimizing the effects of humic acid (HA), a potent PCR inhibitor. We compared the effectiveness of four DNA extraction kits (DNeasy, QIAamp DNA Stool, PowerLyzer Power Soil and PrepMan Ultra) and four PCR methods (Amplitaq Gold, bovine serum albumin, PowerClean DNA Clean‐up and inhibitor resistant Taq Polymerase). The results of this and previous studies indicate that chytridiomycosis studies that use PCR methods for disease detection may be significantly underestimating the occurrence of Bd. Our results suggest that to minimize the inhibitory effects of HA, DNeasy should be used for sample DNA extraction and Amplitaq Gold with bovine serum albumin should be used for the Bd PCR assay. We also outline protocols tested, show the results of our methods comparisons and discuss the pros and cons of each method.  相似文献   

19.
20.
Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号