首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stress fiber network within contractile fibroblasts structurally reinforces and provides tension, or "tone", to tissues such as those found in healing wounds. Stress fibers have previously been observed to polymerize in response to mechanical forces. We observed that, when stretched sufficiently, contractile fibroblasts diminished the mechanical tractions they exert on their environment through depolymerization of actin filaments then restored tissue tension and rebuilt actin stress fibers through staged Ca(++)-dependent processes. These staged Ca(++)-modulated contractions consisted of a rapid phase that ended less than a minute after stretching, a plateau of inactivity, and a final gradual phase that required several minutes to complete. Active contractile forces during recovery scaled with the degree of rebuilding of the actin cytoskeleton. This complementary action demonstrates a programmed regulatory mechanism that protects cells from excessive stretch through choreographed active mechanical and biochemical healing responses.  相似文献   

2.
Caldesmon phosphorylation in actin cytoskeletal remodeling   总被引:2,自引:0,他引:2  
Caldesmon is an actin-binding protein that is capable of stabilizing actin filaments against actin-severing proteins, inhibiting actomyosin ATPase activity, and inhibiting Arp2/3-mediated actin polymerization in vitro. Caldesmon is a substrate of cdc2 kinase and Erk1/2 MAPK, and phosphorylation by either of these kinases reverses the inhibitory effects of caldesmon. Cdc2-mediated caldesmon phosphorylation and the resulting dissociation of caldesmon from actin filaments are essential for M-phase progression during mitosis. Cells overexpressing the actin-binding carboxyterminal fragment of caldesmon fail to release the fragment completely from actin filaments during mitosis, resulting in a higher frequency of multinucleated cells. PKC-mediated MEK/Erk/caldesmon phosphorylation is an important signaling cascade in the regulation of smooth muscle contraction. Furthermore, PKC activation has been shown to remodel actin stress fibers into F-actin-enriched podosome columns in cultured vascular smooth muscle cells. Podosomes are cytoskeletal adhesion structures associated with the release of metalloproteases and degradation of extracellular matrix during cell invasion. Interestingly, caldesmon is one of the few actin-binding proteins that is associated with podosomes but excluded from focal adhesions. Caldesmon also inhibits the function of gelsolin and Arp2/3 complex that are essential for the formation of podosomes. Thus, caldesmon appears to be well positioned for playing a modulatory role in the formation of podosomes. Defining the roles of actin filament-stabilizing proteins such as caldesmon and tropomyosin in the formation of podosomes should provide a more complete understanding of molecular systems that regulate the remodeling of the actin cytoskeleton in cell transformation and invasion.  相似文献   

3.
The role of reactive oxygen species (ROS)‐mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L ‐tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co‐polymerizing hydrophobic L ‐tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl‐tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos‐2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG‐containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG‐mediated ROS induction caused nuclear translocation of glyceraldehyde‐3‐phosphate dehydrogenase and an increase in caspase‐3 activity, confirming a link with apoptosis. PEG‐rich pro‐oxidant substrates caused cytoskeletal actin remodeling through β‐actin cleavage by caspase‐3 into fractins. The fractins co‐localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic β‐actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti‐oxidant DT‐containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in “outside‐in” signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling. J. Cell. Physiol. 218: 549–557, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
A recent publication in the April 4 issue of Cell advances our understanding of stimulus response coupling leading to actin remodeling. It describes the identification of a novel membrane component Mig-2 that engages filamin A through a new intermediary, migfilin, to stimulate actin assembly and cell spreading on a substrate of extracellular matrix.  相似文献   

5.
6.
7.
Lebart MC  Benyamin Y 《The FEBS journal》2006,273(15):3415-3426
Cells offer different types of cytoskeletal anchorages: transitory structures such as focal contacts and perennial ones such as the sarcomeric cytoskeleton of muscle cells. The turnover of these structures is controlled with different timing by a family of cysteine proteases activated by calcium, the calpains. The large number of potential substrates present in each of these structures imposes fine tuning of the activity of the proteases to avoid excessive action. This phenomenon is thus guaranteed by various types of regulation, ranging from a relatively high calcium concentration necessary for activation, phosphorylation of substrates or the proteases themselves with either a favorable or inhibitory effect, possible intervention of phospholipids, and the presence of a specific inhibitor and its possible degradation before activation. Finally, formation of multiprotein complexes containing calpains offers a new method of regulation.  相似文献   

8.
Veech (2013, Global Ecology and Biogeography, 22 , 252–260) introduced a formula to calculate the probability of two species co‐occurring in various sites under the assumption of statistical independence between the two distributional patterns. He presented his model as a new procedure, a ‘pairwise approach’, different from analyses of whole presence–absence matrices to examine patterns of co‐occurrence. Here I show that: (1) Veech's method is identical to Fisher's exact test, a standard procedure for measuring the statistical association between two discrete variables; (2) in a broad sense, the pairwise approach is very similar to early analyses of spatial association, such as the one advanced by Forbes in 1907; (3) implicit in Veech's formula is a sampling scheme that is indistinguishable from well‐known matrix‐level null models that randomize the distribution of species among equiprobable sites; (4) pairwise co‐occurrence patterns can be analysed using any matrix‐level null model, so pairwise comparisons are not limited to using Veech's formula. The methodological distinction that Veech proposed between pairwise and matrix‐level approaches does not in fact exist, although the conceptual distinction between the two approaches is still a debated topic.  相似文献   

9.
We show that polarization‐sensitive optical coherence tomography angiography (PS‐OCTA) based on full Jones matrix assessment of speckle decorrelation offers improved contrast and depth of vessel imaging over conventional OCTA. We determine how best to combine the individual Jones matrix elements and compare the resulting image quality to that of a conventional OCT scanner by co‐locating and imaging the same skin locations with closely matched scanning setups. Vessel projection images from finger and forearm skin demonstrate the benefits of Jones matrix‐based PS‐OCTA. Our study provides a promising starting point and a useful reference for future pre‐clinical and clinical applications of Jones matrix‐based PS‐OCTA.  相似文献   

10.
Actin- and microtubule-mediated changes in cell shape are essential for many cellular activities. However, the molecular mechanisms underlying the interplay between the two are complex and remain obscure. Here we show that the expression of delta-catenin (or NPRAP/Neurojungin), a member of p120(ctn) subfamily of armadillo proteins can induce the branching of dendrite-like processes in 3T3 cells and enhance dendritic morphogenesis in primary hippocampal neurons. This induction of branching phenotype involves initially the disruption of filamentous actin, and requires the growth of microtubules. The carboxyl-terminal truncation mutant of delta-catenin can cluster and redistribute the full-length protein, and dominantly inhibit its branching effect. delta-Catenin forms protein complexes and can bind directly to actin in vitro. The carboxyl-terminal truncation of delta-catenin does not interfere with its actin-binding capability; therefore the actin interaction alone is not sufficient for the induction of dendrite-like processes. When delta-catenin-transformed cells establish elaborate dendrite-like branches, the main cellular processes become stabilized and resist the disruption of both actin filaments and microtubules, as determined by fluorescent light microscopy and time-lapse recording analyses. We suggest that delta-catenin can effect a biphasic cytoskeletal remodeling event which differentially regulates actin and microtubules and promotes cellular morphogenesis.  相似文献   

11.
We have examined the proteolytic processing of radiolabeled epidermal growth factor (EGF) in EGF growth-responsive human foreskin fibroblasts (HFF) versus EGF nonresponsive human fetal lung fibroblasts (HFL). Previous studies (Schaudies et al., 1985) have shown that both cell lines demonstrate similar binding affinities and numbers of binding sites, as well as similar rates of internalization and degradation of the bound, radiolabeled hormone. We have used nondenaturing electrophoresis to compare how these two cell lines process EGF at its carboxy terminus. EGF lacking either one [des-(53)-EGF] or six [des (48-53)-EGF] carboxy terminal amino acids could be distinguished by this method. Chloroquine or leupeptin were added to the incubation system in an attempt to accentuate potential differences in hormonal processing between the responsive and nonresponsive cell lines. In the absence of inhibitors, the responsive and nonresponsive cells generated similar distributions of processed forms of EGF after 30-minutes incubation. However, after 4-hours incubation in the constant presence of 125I-EGF, the electrophoretic profiles of extracted hormone were substantially different. The radiolabel within the responsive cells, as well as that released from them, migrated predominantly at the dye front, indicating complete degradation of EGF. In contrast, the majority of the radiolabel within the nonresponsive cells migrated as partially processed forms of hormone, while the released radiolabel migrated at the dye front. Addition of chloroquine to either cell line inhibited processing of EGF beyond removal of the carboxyl terminal arginine residue. Both intact 125I-EGF, and 125I-EGF lacking the carboxyl terminal arginine were released from chloroquine-treated cells in a ratio equal to that present in the intact cells. Incubations in leupeptin, proteolysis of EGF beyond the des-(48-53)-EGF was blocked; however, no large-molecular-weight species were released from the cells under these conditions.  相似文献   

12.
Non‐host resistance (NHR) is a most durable broad‐spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non‐host pathogen will provide insights into molecular events of NHR. In this study, the ECM‐associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non‐host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM‐associated proteins was performed by extracting wall‐bound and soluble ECM components using both destructive and non‐destructive procedures. A total of 53 proteins was differentially expressed in citrus–Xanthomonas host and non‐host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense‐response (5 pathogenesis‐related proteins, 3 miraculin‐like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe‐SOD, ascorbate peroxidase and 2‐cysteine‐peroxiredoxin]; (3) signaling (lectin, curculin‐like lectin and concanavalin A‐like lectin kinase); and (4) cell‐wall modification (α‐xylosidase, glucan 1, 3 β‐glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine‐peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell‐wall remodeling and signaling proteins in citrus–Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre‐treatment supported the role of non‐classical secretory proteins in this phenomenon.  相似文献   

13.
We studied actin cytoskeletal remodeling and the role of leukotrienes and tyrosine phosphorylation in the response of endothelial cells to different types of cyclic mechanical stretching. Human aortic endothelial cells were grown on deformable silicone membranes subjected to either cyclic one-directional (strip) stretching (10%, 0.5 Hz), or biaxial stretching. After 1 min of either type of stretching, actin cytoskeletons of the stretched cells were already disrupted. After stretching for 10 and 30 min, the percentage of the stretched cells that had disrupted actin cytoskeletons were significantly increased, compared with control cells without stretching. Also, at these two time points, biaxial stretching consistently produced higher frequencies of actin cytoskeleton disruption. At 3 h, strip stretching caused the formation of stress fiber bundles, which were oriented nearly perpendicular to the stretching direction. With biaxial stretching, however, actin cytoskeletons in many stretched cells were remodeled into three-dimensional actin structures protruding outside the substrate plane, within which cyclic stretching was applied. In both stretching conditions, actin filaments were formed in the direction without substrate deformation. Moreover, substantially inhibiting either leukotriene production with nordihydroguaiaretic acid or tyrosine phosphorylation with tyrphostin A25 did not block the actin cytoskeletal remodeling. However, inhibiting both leukotriene production and tyrosine phosphorylation completely blocked the actin cytoskeletal remodeling. Thus, the study showed that the remodeling of actin cytoskeletons of the stretched endothelial cells include rapid disruption first and then re-formation. The resulting pattern of the actin cytoskeleton after remodeling depends on the type of cyclic stretching applied, but under either type of cyclic stretching, the actin filaments are formed in the direction without substrate deformation. Finally, leukotrienes and tyrosine phosphorylation are necessary for actin cytoskeletal remodeling of the endothelial cells in response to mechanical stretching.  相似文献   

14.
15.
Z. Li  L. Alisaraie 《Proteins》2015,83(5):970-981
The effects of chemotherapeutic agent vinblastine versus low temperature of 277 K were investigated on the structure of αβ‐tubulin heterodimer by means of molecular dynamics simulations. Individual experiments have shown that the vinblastine‐bound heterodimer, and its apo structure under low temperature of 277 K, both undergo conformational changes toward destabilization of the dimer as compared to the apo tubulin at 300 K. Both factors exhibited weakening of the longitudinal interactions of tubulin heterodimer through displacing dimer interfacial segments, resulting in dominant electrostatic repulsion at the interface of the subunits. The two independent factors of temperature and anti‐mitotic agent facilitate alteration of secondary structure in functional segments such as H1‐S2 loop, H3, H10 helices, and T7 loop, which are known to be important in either longitudinal or lateral contacts among αβ‐heterodimers in MTs protofilaments and their depolymerization mechanism. Proteins 2015; 83:970–981. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
17.
Peptide‐based hydrogels have gained much interest for biomedical applications as a result of their biocompatibility. Herein, we reported a synthetic pH‐sensitive and calcium‐responsive peptide‐amphiphilic hydrogel. The sequences of the peptide amphiphiles were derived from the repeat‐in‐toxin (RTX) motif. At a certain peptide‐amphiphile concentration, self‐assembly was accompanied by the formation of a rigid, viscoelastic hydrogel at low pH or the presence of calcium ions. Circular dichroism spectra showed that the peptide amphiphiles adopted beta‐sheet structure. Meanwhile, as revealed by transmission electron microscopy, the peptide‐amphiphile self‐assembly was accompanied by the formation of long interconnected nanofibrillar superstructure. Material properties of the resulting peptide‐amphiphile hydrogel were characterized using oscillatory sheer rheology, and the storage modulus (G′) was found to be one order of magnitude higher than the loss modulus (G″), indicating a moderately rigid viscoelastic material. Furthermore, with systematical residue substitution, it was found that the aspartic acid within the repeat‐in‐toxin sequence of peptide amphiphiles was responsible for the pH and calcium selectivity. The environmental responsiveness, secondary structure, morphology, and mechanical nature of the peptide‐amphiphile hydrogel make it a possible material candidate for biomedical and engineering application. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Cells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin. A shear stress of 0.74 dyn/cm2 for 3 hours caused redistribution of cytoskeletal tension and significant focal adhesion remodeling. The fate of focal adhesions is determined by the stress state and stability of the linked actin stress fibers. In the interior of the cell, the mature focal adhesions disassembled within 35-40 min under flow and stress fibers disintegrated. Near the cell periphery, the focal adhesions anchoring the stress fibers perpendicular to the cell periphery disassembled, while focal adhesions associated with peripheral fibers sustained. The diminishing focal adhesions are coupled with local cytoskeletal stress release and actin stress fiber disassembly whereas sustaining peripheral focal adhesions are coupled with an increase in stress and enhancement of actin bundles. The results show that flow induced formation of peripheral actin bundles provides a favorable environment for focal adhesion remodeling along the cell periphery. Under such condition, new FAs were observed along the cell edge under flow. Our results suggest that the remodeling of FAs in epithelial cells under flow is orchestrated by actin cytoskeletal stress redistribution and structural reorganization.  相似文献   

19.
  • Plant microRNAs are small RNAs that are important for genetic regulation of processes such as plant development or environmental responses. Specific microRNAs accumulate in the phloem during phosphate starvation, and may act as long‐distance signalling molecules.
  • We performed quantitative PCR on Arabidopsis hypocotyl micrograft tissues of wild‐type and hen1‐6 mutants to assess the mobility of several phosphate starvation‐responsive microRNA species.
  • In addition to the previously confirmed mobile species miR399d, the corresponding microRNA* (miR399d*) was identified for the first time as mobile between shoots and roots. Translocation by phosphate‐responsive microRNAs miR827 and miR2111a between shoots and roots during phosphate starvation was evident, while their respective microRNA*s were not mobile.
  • The results suggest that long‐distance mobility of microRNA species is selective and can occur without the corresponding duplex strand. Movement of miR399d* and root‐localised accumulation of miR2111a* opens the potential for persisting microRNA*s to be mobile and functional in novel pathways during phosphate starvation responses.
  相似文献   

20.
Many real‐life stains have origins from biological matters including proteins, lipids, and carbohydrates that act as gluing agents binding along with other particulates or microbes to exposed surfaces of automobiles, furniture, and fabrics. Mimicking naturally occurring self‐defensive processes, we demonstrate in this work that a solid surface carrying partially exposed enzyme granules protected the surface in situ from contamination by biological stains and fingerprints. Attributed to the activities of enzymes which can be made compatible with a wide range of materials, such anti‐contamination and self‐cleaning functionalities are highly selective and efficient toward sticky chemicals. This observation promises a new mechanism in developing smart materials with desired anti‐microbial, self‐reporting, self‐cleaning, or self‐healing functions. Biotechnol. Bioeng. 2013; 110: 1805–1810. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号