首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinal Müller glial cells have the potential of neurogenic retinal progenitor cells, and could reprogram into retinal‐specific cell types such as photoreceptor cells. How to promote the differentiation of Müller cells into photoreceptor cells represents a promising therapy strategy for retinal degeneration diseases. This study aimed to enhance the transdifferentiation of rat Müller cells‐derived retinal stem cells (MC‐RSCs) into photoreceptor‐like cells and explore the signalling mechanism. We dedifferentiated rat Müller cells into MC‐RSCs which were infected with Otx2 overexpression lentivirus or control. The positive rate of photoreceptor‐like cells among MC‐RSCs treated with Otx2 overexpression lentivirus was significantly higher compared to control. Furthermore, pre‐treatment with Crx siRNA, Nrl siRNA, or GSK‐3 inhibitor SB‐216763 reduced the positive rate of photoreceptor‐like cells among MC‐RSCs treated with Otx2 overexpression lentivirus. Finally, Otx2 induced photoreceptor precursor cells were injected into subretinal space of N‐methyl‐N‐nitrosourea induced rat model of retinal degeneration and partially recovered retinal degeneration in the rats. In conclusion, Otx2 enhances transdifferentiation of MC‐RSCs into photoreceptor‐like cells and this is associated with the inhibition of Wnt signalling. Otx2 is a potential target for gene therapy of retinal degenerative diseases.  相似文献   

2.
3.
4.
Epidermal growth factor receptor (EGF-R) is a receptor tyrosine kinase that can be activated by molecules other than its cognate ligands. This form of crosstalk called transactivation is frequently observed in both physiological and pathological cellular responses, yet it involves various mechanisms. Using the RWPE-1 cell line as a model of non-transformed prostate epithelial progenitor cells, we observed that interleukin-6 (IL-6) is able to promote cell proliferation and ERK1/2 activation provided that EGF-R kinase activity is not impaired. Treatment with GM6001, a general matrix metalloprotease inhibitor, indicated that IL-6 activates EGF-R through cleavage and release of membrane-anchored EGF-R ligands. Several inhibitors were used to test implication of “a disintegrin and metalloprotease” ADAM10 and ADAM17. GW280264X that targets both ADAM10 and ADAM17 blocked IL-6-induced proliferation and ERK1/2 phosphorylation with same potency as GM6001. However, ADAM10 inhibitor GI254023X and ADAM17 inhibitor TAPI-2 were less efficient in inhibiting response of RWPE-1 cells to IL-6, indicating possible cooperation of ADAM17 with ADAM10 or other metalloproteases. Accordingly, our findings suggest that IL-6 stimulates shedding of EGF-R ligands and transactivation of EGF-R in normal prostate epithelial cells, which may be an important mechanism to promote cell proliferation in inflammatory prostate.  相似文献   

5.
Clostridium perfringens delta-toxin is a β-barrel-pore-forming toxin (β-PFT) and a presumptive virulence factor of type B and C strains, which are causative organisms of fatal intestinal diseases in animals. We showed previously that delta-toxin causes cytotoxicity via necrosis in sensitive cells. Here, we examined the effect of delta-toxin on intestinal membrane integrity. Delta-toxin led to a reduction in transepithelial electrical resistance (TEER) and increased the permeability of fluorescence isothiocyanate-conjugated dextran in human intestinal epithelial Caco-2 cells without changing the tight junction proteins, such as zonula occludens-1 (ZO-1), occludin, and claudin-1. On the other hand, delta-toxin reduced the cellular levels of adherence junction protein E-cadherin before cell injury. A disintegrin and metalloprotease (ADAM) 10 facilitates E-cadherin cleavage and was identified as the cellular receptor for alpha-toxin, a β-PFT produced by Staphylococcus aureus. ADAM10 inhibitor (GI254023X) blocked the toxin-induced decrease in TEER and cleavage of E-cadherin. Delta-toxin enhanced ADAM10 activity in a dose- and time-dependent manner. Furthermore, delta-toxin colocalized with ADAM10. These results indicated that ADAM10 plays a key role in delta-toxin-induced intestinal injury.  相似文献   

6.
Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell-cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically.  相似文献   

7.
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases characterized by the loss of photoreceptor cells through apoptosis. N‐methyl‐N‐nitrosourea (MNU) is an alkylating toxicant that induces photoreceptor cell death resembling hereditary RP. This study aimed to investigate the role of nuclear factor κB (NF‐κB) in MNU‐induced photoreceptor degeneration. Adult rats received a single intraperitoneal injection of MNU (60 mg/kg bodyweight). Hematoxylin and eosin staining demonstrated progressive outer nuclear layer (ONL) loss after MNU treatment. Transmission electron microscopy revealed nuclear pyknosis, chromatin margination in the photoreceptors, increased secondary lysosomes, and lobulated retinal‐pigmented epithelial cells in MNU‐treated rats. Numerous photoreceptor cells in the ONL showed positive TUNEL staining and apoptosis rate peaked at 24 hours. Enhanced depth imaging spectral‐domain optical coherence tomography showed ONL thinning and decreased choroid thickness. Electroretinograms showed decreased A wave amplitude that predominated in scotopic conditions. Western blot analysis showed that nuclear IκBα level increased, whereas nuclear NF‐κB p65 decreased significantly in the retinas of MNU‐treated rats. These findings indicate that MNU leads to selective photoreceptor degradation, and this is associated with the inhibition of NF‐κB activation.  相似文献   

8.
The retina regenerates from retinal pigment epithelial (RPE) cells by transdifferentiation in the adult newt and Xenopus laevis when it is surgically removed. This was studied under a novel culture condition, and we succeeded, for the first time, in developing a complete retinal laminar structure from a single epithelial sheet of RPE. We cultured a Xenopus RPE monolayer sheet isolated from the choroid on a filter cup with gels overlaid and found that the retinal tissue structure differentiated with all retinal layers present. In the culture, RPE cells isolated themselves from the culture substratum (filter membrane), migrated, and reattached to the overlaid gel, on which they initiated transdifferentiation. This was exactly the same as observed during in vivo retina regeneration of X. laevis. In contrast, when RPE monolayers were cultured similarly without isolation from the choroid, RPE cells proliferated, but remained pigmented instead of transdifferentiating, indicating that alteration in tissue interaction triggers transdifferentiation. We then examined under the conventional tissue culture condition whether altered RPE‐choroid interaction induces Pax6 expression. Pax6 was upregulated in RPE cells soon after they were removed from the choroid, and this expression was not dependent of FGF2. FGF2 administration was needed for RPE cells to maintain Pax6 expression. From the present results, in addition to our previous ones, we propose a two‐step mechanism of transdifferentiation: the first step is a reversible process and is initiated by the alteration of the cell‐extracellular matrix and/or cell–cell interaction followed by Pax6 upregulation. FGF2 plays a key role in driving RPE cells into the second step, during which they differentiate into retinal stem cells. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

9.
This study examines the retinal transdifferentiation (TD) of retinal pigmented epithelium (RPE) fragments dissected from Xenopus laevis larvae and implanted into the vitreous chamber of non-lentectomized host eyes. In these experimental conditions, most RPE implants transformed into polarized vesicles in which the side adjacent to the lens maintained the RPE phenotype, while the side adjacent to the host retina transformed into a laminar retina with the photoreceptor layer facing the cavity of the vesicle and with the ganglionar cell layer facing the host retina. The formation of a new retina with a laminar organization is the result of depigmentation, proliferation and differentiation of progenitor cells under the influence of inductive factors from the host retina. The phases of the TD process were followed using BrdU labelling as a marker of the proliferation phase and using a monoclonal antibody (mAbHP1) as a definitive indicator of retina formation. Pigmented RPE cells do not express Pax6. In the early phase of RPE to retinal TD, all depigmented and proliferating progenitor cells expressed Pax6. Changes in the Pax6 expression pattern became apparent in the early phase of differentiation, when Pax6 expression decreased in the presumptive outer nuclear layer (ONL) of the new-forming retina. Finally, during the late differentiation phase, the ONL, which contains photoreceptors, no longer expressed Pax6, Pax6 expression being confined to the ganglion cell layer and the inner nuclear layer. These results indicate that Pax6 may have different roles during the different phases of RPE to retinal TD, acting as an early retinal determinant and later directing progenitor cell fate.  相似文献   

10.
A photoreceptor cell line, designated 661W, was tested for its response to growth factors secreted by retinal pigment epithelial cells including basic fibroblast growth factor, epidermal growth factor, and nerve growth factor. Early passaged 661W cells expressed high levels of retinal progenitor markers such as nestin and Pax6, but not opsin or glial fibrillary acidic protein. 661W cells grown in FGF-2 or EGF exhibited a multiple-process morphology with small phase-bright nuclei similar to neurons, whereas cells cultured in nerve growth factor (NGF) or retinal pigment epithelium (RPE)-conditioned medium (RPE-CM) displayed rounded profiles lacking processes. 661W cells grown in FGF-2 were slightly elevated, but not significantly above, control cultures; but cells treated with RPE-CM or NGF were fewer, ∼63% and 49% of control, respectively. NGF immunodepletion of RPE-CM strongly suppressed the inhibitory activity of RPE-CM on cell proliferation. Cells treated with FGF-2, but not NGF, upregulated their expression of opsin. All treatment conditions resulted in almost 100% viability based on calcium AM staining. Cells grown on extracellular matrix proteins laminin, fibronectin, and/or collagen resembled those grown on untreated dishes. This study showed that early passaged 661W cells displayed characteristics of retinal progenitor cells. The 661W cells proliferated and appeared to mature morphologically expressing rod photoreceptor phenotype in response to FGF-2. In contrast, NGF and RPE-CM inhibited proliferation and morphological differentiation of 661W cells, possibly inducing cell cycle arrest. These findings are consistent with reports that the RPE modulates photoreceptor differentiation and retinal progenitor cells via secreted factors and may play a role in the regulation of the retinal stem cell niche.  相似文献   

11.
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N‐cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin‐17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin‐17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin‐17 specific antisense morpholino oligonucleotides (MOs). Protocadherin‐17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin‐17 mRNA. Injection of a vivo‐protocadherin‐17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin‐17 plays an important role in the normal formation of the zebrafish retina. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

12.
Long‐standing evidence gained from Pax6 mutant embryos pointed to an involvement of Pax6‐dependent cell adhesion molecules in patterning the central nervous system and, in particular, the retina. However, direct evidence for such pathways remained elusive. We here present direct evidence that knockdown of Pax6 expression by morpholino antisense molecules in Xenopus embryos and knockdown of maternal N‐cadherin (mNcad), N‐cadherin (Ncad) and neural cell adhesion molecule (NCAM) produce similar phenotypes. Eye formation is reduced and retinal lamination is heavily disorganized. In Pax6 knockdown embryos, the levels of mRNAs coding for these cell adhesion molecules are markedly reduced. Overexpression of Pax6 efficiently rescues the phenotype of Pax6 knockdown embryos and restores expression of these putative target genes. Rescue of Pax6‐deficiency by the putative target gene mNcad moderately rescues eye formation. The promoters of the genes coding for cell adhesion molecules contain several putative Pax6 binding sites, as determined by computer analysis. Chromatin immunoprecipitation shows that, in embryonic heads, Pax6 binds to promoter regions containing such predicted binding sites. Thus, several cell adhesion molecules are direct target genes of Pax6 and cooperate in retinal patterning. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 764–780, 2010  相似文献   

13.
A disintegrin and metalloprotease-10(ADAM10) promotes the metastasis of prostate cancer (PCa), but the specific mechanism is indistinct. Herein, DU145 cell lines with stable overexpression and knockdown of ADAM10 were constructed. We found that ectopic expression of ADAM10 not only significantly facilitated cell proliferation, migration, invasion, and inhibited apoptosis, but also could specifically hydrolyze ephrin-A5 and release the ephrin-A5 soluble ectodomain into extracellular media in vitro. These effects were reversed by ADAM10 depletion or treatment of GI254023X. Meanwhile, the co-location and physical interaction among EphA3, ephrin-A5, and ADAM10 were observed in PCa cells using immunofluorescence and immunoprecipitation techniques. Interestingly, overexpression of EphA3 exerted opposite effects in DU145 (ephrin-A5 + ) cells and PC-3 (ephrin-A5 ± ) cells. In addition, the pro-tumor function of EphA3 was reversed by the treatment with the exogenous ephrin-A5-Fc, which increased the phosphorylation level of EphA3 in PC-3 (ephrin-A5 ± ) cells. In nude mice, ADAM10 accelerated growth of the primary tumor, decreased the level of ephrin-A5 in the tumor tissue, but increased the level of ephrin-A5 in the peripheral blood, accompanied with an increase in the expression of CD31 and VEGF (vascular endothelial growth factor) in the tissue. What is more, the serum ephrin-A5 content of patients with metastatic PCa was significantly higher than that of the non-metastatic group (P < 0.05). The receiver operating characteristic curve(ROC) showed that the area under the curve(AUC) of serum ephrin-A5 as a marker of PCa metastasis was 0.843, with a sensitivity of 93.5% and a specificity of 75%. It is concluded that ADAM10-mediated ephrin-A5 shedding promotes PCa metastasis via transforming the role of EphA3 from ligand-dependent tumor suppressor to ligand-independent promoter, and ephrin-A5 in the blood can be used as a new biomarker for PCa metastasis.Subject terms: Mechanisms of disease, Diagnostic markers  相似文献   

14.
Pancreatic adenocarcinoma or pancreatic cancer is often diagnosed at a very late stage at which point treatment options are minimal. Current chemotherapeutic interventions prolong survival marginally, thereby emphasizing the acute need for better treatment options to effectively manage this disease. Studies from different laboratories have shown that the Alzheimer disease-associated amyloid precursor protein (APP) is overexpressed in various cancers but its significance is not known. Here we sought to determine the role of APP in pancreatic cancer cell survival and proliferation. Our results show that pancreatic cancer cells secrete high levels of sAPPα, the α-secretase cleaved ectodomain fragment of APP, as compared with normal non-cancerous cells. Treatment of cells with batimastat or GI254023X, inhibitors of the α-secretase ADAM10, prevented sAPPα generation and reduced cell survival. Additionally, inhibition of sAPPα significantly reduced anchorage independent growth of the cancer cells. The effect of batimastat on cell survival and colony formation was enhanced when sAPPα downregulation was combined with gemcitabine treatment. Moreover, treatment of batimastat-treated cells with recombinant sAPPα reversed the inhibitory effect of the drug thereby indicating that sAPPα can indeed induce proliferation of cancer cells. Down-regulation of APP and ADAM10 brought about similar results, as did batimastat treatment, thereby confirming that APP processing is important for growth and proliferation of these cells. These results suggest that inhibition of sAPPα generation might enhance the effectiveness of the existing chemotherapeutic regimen for a better outcome.  相似文献   

15.
16.
Progenitor cells isolated from early rat embryo retinas differentiate into phenotypes normally generated early in retinal development (e.g., ganglion cells), whereas progenitors isolated from postnatal retinas differentiate into later-generated retinal cell types (e.g., rod photoreceptors; Reh and Kljavin, J. Neurosci. 9:4179–4189; 1989; Adler and Hatlee, 1989; Science 243:391–393; Sparrow, Hicks, and Barnstable, 1990, Dev. Brain Res. 51:69–84). To determine whether this change in committment is intrinsic to the progenitor cells, or alternatively can be modified by interactions with their developing environment, I co-cultured mouse and rat retinal cells, from different developmental stages, and identified the resulting phenotypes with species-specific and cell class-specific antibodies. I found that the phenotypes into which mouse neuroepithelial cells differentiate depends on the phenotypes of the rat cells that surround them. Retinal precursor cells from embryonic day (E) 10–12 will adopt the rod photoreceptor phenotype only when close to cells expressing this phenotype. By contrast, when the E10–12 retinal progenitor cells are cultured with cells from the cerebral cortex, they differentiate primarily into large multipolar neurons, similar in their morphology and antigen expression to retinal ganglion cells. These results indicate that interactions among the cells of the developing retina are important in the determination of cell fate. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
T cell immunoglobulin and mucin domain 1 and 4 (TIM-1 and -4) proteins serve as phosphatidylserine receptors to engulf apoptotic cells. Here we show that human TIM-1 and TIM-4 proteins are targets of A Disintegrin And Metalloprotease (ADAM)-mediated ectodomain shedding resulting in soluble forms of TIM-1 and TIM-4. We identified ADAM10 and ADAM17 as major sheddases of TIM-1 and TIM-4 as shown by protease-specific inhibitors, the ADAM10 prodomain, siRNA and ADAM10/ADAM17 deficient murine embryonic fibroblasts (MEFs). TIM-1 and TIM-4 lacking the intracellular domain were efficiently cleaved after ionomycin- and PMA-treatment, indicating that the intracellular domain was not necessary for ectodomain shedding. Soluble TIM-1 and -4 were able to bind to phosphatidylserine, suggesting that soluble TIM-1 and -4 might act as negative regulators of cellular TIM-1 and -4. In summary, we describe TIM-1 and TIM-4 as novel targets for ADAM10- and ADAM17-mediated ectodomain shedding.  相似文献   

18.
All‐trans‐retinal (atRAL) is a highly reactive carbonyl specie, known for its reactivity on cellular phosphatidylethanolamine in photoreceptor. It is generated by photoisomerization of 11‐cis‐retinal chromophore linked to opsin by the Schiff's base reaction. In ABCA4‐associated autosomal recessive Stargardt macular dystrophy, atRAL results in carbonyl and oxidative stress, which leads to bisretinoid A2E, accumulation in the retinal pigment epithelium (RPE). This A2E‐accumulation presents as lipofuscin fluorescent pigment, and its photooxidation causes subsequent damage. Here we describe protection against a lethal dose of atRAL in both photoreceptors and RPE in primary cultures by a lipidic polyphenol derivative, an isopropyl‐phloroglucinol linked to DHA, referred to as IP‐DHA. Next, we addressed the cellular and molecular defence mechanisms in commonly used human ARPE‐19 cells. We determined that both polyunsaturated fatty acid and isopropyl substituents bond to phloroglucinol are essential to confer the highest protection. IP‐DHA responds rapidly against the toxicity of atRAL and its protective effect persists. This healthy effect of IP‐DHA applies to the mitochondrial respiration. IP‐DHA also rescues RPE cells subjected to the toxic effects of A2E after blue light exposure. Together, our findings suggest that the beneficial role of IP‐DHA in retinal cells involves both anti‐carbonyl and anti‐oxidative capacities.  相似文献   

19.
In 1970s, taurine deficiency was reported to induce photoreceptor degeneration in cats and rats. Recently, we found that taurine deficiency contributes to the retinal toxicity of vigabatrin, an antiepileptic drug. However, in this toxicity, retinal ganglion cells were degenerating in parallel to cone photoreceptors. The aim of this study was to re-assess a classic mouse model of taurine deficiency following a treatment with guanidoethane sulfonate (GES), a taurine transporter inhibitor to determine whether retinal ganglion cells are also affected. GES treatment induced a significant reduction in the taurine plasma levels and a lower weight increase. At the functional level, photopic electroretinograms were reduced indicating a dysfunction in the cone pathway. A change in the autofluorescence appearance of the eye fundus was explained on histological sections by an increased autofluorescence of the retinal pigment epithelium. Although the general morphology of the retina was not affected, cell damages were indicated by the general increase in glial fibrillary acidic protein expression. When cell quantification was achieved on retinal sections, the number of outer/inner segments of cone photoreceptors was reduced (20?%) as the number of retinal ganglion cells (19?%). An abnormal synaptic plasticity of rod bipolar cell dendrites was also observed in GES-treated mice. These results indicate that taurine deficiency can not only lead to photoreceptor degeneration but also to retinal ganglion cell loss. Cone photoreceptors and retinal ganglion cells appear as the most sensitive cells to taurine deficiency. These results may explain the recent therapeutic interest of taurine in retinal degenerative pathologies.  相似文献   

20.
This study shows that the high affinity alpha-chain of the interleukin (IL)-15 receptor exists not only in membrane-anchored but also in soluble form. Soluble IL-15Ralpha (sIL-15Ralpha) can be detected in mouse sera and cell-conditioned media by enzyme-linked immunosorbent assay and by immunoprecipitation and Western blotting. This protein has a molecular mass of about 30 kDa because of the presence of a single N-glycosylation site, which is reduced to 26 kDa after N-glycosidase treatment. Transmembrane IL-15Ralpha is constitutively converted into its soluble form by proteolytic cleavage that involves tumor necrosis factor-alpha-converting enzyme (TACE), and this process is further enhanced by phorbol 12-myristate 13-acetate (PMA) stimulation. The hydroxamate GW280264X, which is capable of blocking TACE and the closely related disintegrin-like metalloproteinase 10 (ADAM10), effectively inhibited both spontaneous and PMA-inducible cleavage of IL-15Ralpha, whereas GI254023X, which preferentially blocks ADAM10, was ineffective. Overexpression of TACE but not ADAM10 in COS-7 cells enhanced the constitutive and PMA-inducible cleavage of IL-15Ralpha. Moreover, murine fibroblasts deficient in TACE but not ADAM10 expression exhibited a significant reduction in the spontaneous and inducible IL-15Ralpha shedding, whereas a reconstitution of TACE in these cells restored the release of sIL-15Ralpha, thereby suggesting that TACE-mediated proteolysis may represent a major mechanism for sIL-15Ralpha generation in mice. The existence of natural sIL-15Ralpha offers novel insights into the complex biology of IL-15 and envisages a new level for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号