共查询到20条相似文献,搜索用时 4 毫秒
1.
Cristina Ferreras Graham Rushton Claire L. Cole Muhammad Babur Brian A. Telfer Toin H. van Kuppevelt John M. Gardiner Kaye J. Williams Gordon C. Jayson Egle Avizienyte 《The Journal of biological chemistry》2012,287(43):36132-36146
Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents. 相似文献
2.
Morgane Gourlaouen Jonathan C. Welti Naveen S. Vasudev Andrew R. Reynolds 《The Journal of biological chemistry》2013,288(11):7467-7480
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis. 相似文献
3.
Karl Deacon David Onion Rajendra Kumari Susan A. Watson Alan J. Knox 《The Journal of biological chemistry》2012,287(47):39967-39981
4.
5.
6.
Ethel R. Pereira Karen Frudd Walid Awad Linda M. Hendershot 《The Journal of biological chemistry》2014,289(6):3352-3364
7.
目的探讨胃癌组织中PTEN、vascular endothelial growthfactor(VEGF)基因表达及其与肿瘤侵袭转移的关系。方法用RT-PCR和免疫组化方法检测胃癌、淋巴结转移组织中PTEN、VEGF mRNA和蛋白表达;用CD34检测肿瘤细胞微血管数。结果PTEN和VEGF mRNA表达阳性率在正常胃黏膜为76.5%与0.0%、胃癌组织为30.9%与69.1%、淋巴结转移组织23.6%与74.5%;PTEN和VEGF蛋白阳性率在正常胃黏膜为76.5%与0.0%、胃癌组织27.9%与82.4%、淋巴结转移组织16.3%与91.0%;胃癌组织中新生血管呈浸润生长,以淋巴结转移组织中明显。胃癌组织PTEN mRNA和蛋白低于正常胃黏膜(P〈0.01),VEGF高于正常胃黏膜(P〈0.01),PTEN与VEGF表达负相关(P〈0.05),VEGF表达与新生血管形成正相关(P〈0.05)。结论PTEN基因失活和VEGF的过表达与新生血管形成相关,可能是通过调节包括VEGF在内的血管生成因子而在血管形成中起作用。 相似文献
8.
9.
Jun-ichi Suehiro Yasuharu Kanki Chihiro Makihara Keri Schadler Mai Miura Yuuka Manabe Hiroyuki Aburatani Tatsuhiko Kodama Takashi Minami 《The Journal of biological chemistry》2014,289(42):29044-29059
VEGF is a key regulator of endothelial cell migration, proliferation, and inflammation, which leads to activation of several signaling cascades, including the calcineurin-nuclear factor of activated T cells (NFAT) pathway. NFAT is not only important for immune responses but also for cardiovascular development and the pathogenesis of Down syndrome. By using Down syndrome model mice and clinical patient samples, we showed recently that the VEGF-calcineurin-NFAT signaling axis regulates tumor angiogenesis and tumor metastasis. However, the connection between genome-wide views of NFAT-mediated gene regulation and downstream gene function in the endothelium has not been studied extensively. Here we performed comprehensive mapping of genome-wide NFATc1 binding in VEGF-stimulated primary cultured endothelial cells and elucidated the functional consequences of VEGF-NFATc1-mediated phenotypic changes. A comparison of the NFATc1 ChIP sequence profile and epigenetic histone marks revealed that predominant NFATc1-occupied peaks overlapped with promoter-associated histone marks. Moreover, we identified two novel NFATc1 regulated genes, CXCR7 and RND1. CXCR7 knockdown abrogated SDF-1- and VEGF-mediated cell migration and tube formation. siRNA treatment of RND1 impaired vascular barrier function, caused RhoA hyperactivation, and further stimulated VEGF-mediated vascular outgrowth from aortic rings. Taken together, these findings suggest that dynamic NFATc1 binding to target genes is critical for VEGF-mediated endothelial cell activation. CXCR7 and RND1 are NFATc1 target genes with multiple functions, including regulation of cell migration, tube formation, and barrier formation in endothelial cells. 相似文献
10.
Byung-Hee Chung Jung Joon Lee Dooil Jeoung Jongseon Choe Young-Geun Kwon 《Biochemical and biophysical research communications》2010,391(1):254-260
The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125FAK-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration. 相似文献
11.
目的:探讨上皮性卵巢癌组织中maspin蛋白与血管内皮生长因子-C(VEGF-C)表达的临床意义及其相关性。方法:采用免疫组化技术检测75例上皮性卵巢癌中maspin蛋白与VEGF-C的表达情况,以卵巢良性肿瘤及正常卵巢作为对照。结果:maspin和VEGF-C在上皮性卵巢癌中的阳性表达率分别为61.3%、82.7%,均明显高于卵巢良性肿瘤(13.3%、20%)和正常卵巢组织(0%、0%),maspin蛋白在上皮性卵巢癌中的表达与FIGO分期高、组织学分级高、腹水形成和淋巴结转移有关;VEGF-C与FIGO分期高、淋巴结转移和腹水形成有关;上皮性卵巢癌中maspin蛋白与VEGF-C的表达成正相关。结论:maspin和VEGF-C在上皮性卵巢癌中表达上调,在卵巢上皮性癌的浸润、转移中起重要作用。 相似文献
12.
Sivak JM Ostriker AC Woolfenden A Demirs J Cepeda R Long D Anderson K Jaffee B 《The Journal of biological chemistry》2011,286(52):44965-44975
Pathological neovascularization occurs when a balance of pro- and anti-angiogenic factors is disrupted, accompanied by an amplifying inflammatory cascade. However, the interdependence of these responses and the mechanism triggering the initial angiogenic switch have remained unclear. We present data from an epithelial debridement model of corneal neovascularization describing an initial 3-day period when a substantial component of neovascular growth occurs. Administration of selective inhibitors shows that this initial growth requires signaling through VEGFR-2 (vascular endothelial growth factor receptor-2), independent of the accompanying inflammatory response. Instead, increased VEGF production is found prominently in repair epithelial cells and is increased prior to recruitment of neutrophil/granulocytes and macrophage/monocytes. Consequently, early granulocyte and monocyte depletion has little effect on corneal neovascularization outgrowth. These data indicate that it is possible to pharmacologically uncouple these mechanisms during early injury-driven neovascularization in the cornea and suggest that initial tissue responses are coordinated by repair epithelial cells. 相似文献
13.
Zhi-Yuan Xu Jia-Ning Tang Hua-Xia Xie Yi-An Du Ling Huang Peng-Fei Yu Xiang-Dong Cheng 《International journal of biological sciences》2015,11(3):284-294
Background: 5-Fluorouracil (5Fu) chemotherapy is the first treatment of choice for advanced gastric cancer (GC), but its effectiveness is limited by drug resistance. Emerging evidence suggests that the existence of cancer stem cells (CSCs) contributes to chemoresistance. The aim of the present study was to determine whether 5Fu chemotherapy generates residual cells with CSC-like properties in GC. Methods: Human GC cell lines, SGC7901 and AGS, were exposed to increasing 5Fu concentrations. The residual cells were assessed for both chemosensitivity and CSC-like properties. B lymphoma Mo-MLV insertion region 1 (BMI1), a putative CSC protein, was analyzed by immunohistochemical staining and subjected to pairwise comparison in GC tissues treated with or without neoadjuvant 5Fu-based chemotherapy. The correlation between BMI1 expression and recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy was then examined. Results: The residual cells exhibited 5Fu chemoresistance. These 5Fu-resistant cells displayed some CSC features, such as a high percentage of quiescent cells, increased self-renewal ability and tumorigenicity. The 5Fu-resistant cells were also enriched with cells expressing cluster of differentiation (CD)133+, CD326+ and CD44+CD24-. Moreover, the BMI1 gene was overexpressed in 5Fu-resistant cells, and BMI1 knockdown effectively reversed chemoresistance. The BMI1 protein was highly expressed consistently in the remaining GC tissues after 5Fu-based neoadjuvant chemotherapy, and BMI1 levels were correlated positively with recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy. Conclusions: Our data provided molecular evidence illustrating that 5Fu chemotherapy in GC resulted in acquisition of CSC-like properties. Moreover, enhanced BMI1 expression contributed to 5Fu resistance and may serve as a potential therapeutic target to reverse chemoresistance in GC patients. 相似文献
14.
15.
Shradha Prabhulkar Subbiah Alwarappan Guodong Liu Chen-Zhong Li 《Biosensors & bioelectronics》2009,24(12):3524-3530
In this paper, a highly sensitive, reagentless, electrochemical strategy is reported for the detection of a cancer biomarker-Vascular Endothelial Growth Factor (VEGF). Disc shaped carbon fiber microelectrodes were used as the immunosensor platform. Ferrocene monocarboxylic acid labeled anti-VEGF was covalently immobilized on the microelectrode surface using a Jeffamine cross-linker. The formation of immunocomplexes leads to a decrease in the electrochemical signal of ferrocene monocarboxylic acid owing to increased spatial blocking of microelectrode surface. These signal changes enable quantitative detection of VEGF in solution. Voltammetric measurements were conducted to evaluate the interfacial immunoreactions and to quantitatively detect VEGF biomarker. The proposed immunosensing strategy allows a rapid and sensitive means of VEGF analysis with a limit of detection of about 38 pg/mL. This opens up the possibility of employing these electrodes for various single cell analysis and clinical applications. Further, experimental conditions such as concentration of the immobilized antibodies and incubation period were optimized. Following this, the stability and specificity of the immunosensors were also evaluated. 相似文献
16.
血管内皮生长因子(Vacularendothelial growth factor,VEGF)-血管内皮生长因子受体-2(VEGF receptor2,VEGFR-2)信号轴调控血管生成反应。糖尿病病理状态下,氧化应激异常激活、NO等血管活性物质功能受损、以及晚期糖基化终末产物增加,该信号轴功能失调,使得血管生成反应在一些器官组织中呈增强状态,如视网膜和肾;然而在另一些组织中却是受到抑制,如外周血管等。不正常的血管生成反应最终导致糖尿病性心血管并发症的发生。因此,阐明血管生产反应功能障碍,将为糖尿病心血管并发症靶向治疗提供依据。 相似文献
17.
Francescone R Scully S Bentley B Yan W Taylor SL Oh D Moral L Shao R 《The Journal of biological chemistry》2012,287(29):24821-24831
Glioblastoma (GBM) is extremely aggressive and essentially incurable. Its malignancy is characterized by vigorous microvascular proliferations. Recent evidence has shown that tumor cells display the ability to drive blood-perfused vasculogenic mimicry (VM), an alternative microvascular circulation independent of endothelial cell angiogenesis. However, molecular mechanisms underlying this vascular pathogenesis are poorly understood. Here, we found that vascular channels of VM in GBM were composed of mural-like tumor cells that strongly express VEGF receptor 2 (Flk-1). To explore a potential role of Flk-1 in the vasculogenesis, we investigated two glioblastoma cell lines U87 and GSDC, both of which express Flk-1 and exhibit a vascular phenotype on Matrigel. Treatment of both cell lines with either Flk-1 gene knockdown or Flk-1 kinase inhibitor SU1498 abrogated Flk-1 activity and impaired vascular function. Furthermore, inhibition of Flk-1 activity suppressed intracellular signaling cascades, including focal adhesion kinase and mitogen-activated protein kinase ERK1/2. In contrast, blockade of VEGF activity by the neutralizing antibody Bevacizumab failed to recapitulate the impact of SU1498, suggesting that Flk-1-mediated VM is independent of VEGF. Xenotransplantation of SCID/Beige mice with U87 cells and GSDCs gave rise to tumors harboring robust mural cell-associated vascular channels. Flk-1 shRNA restrained VM in tumors and subsequently inhibited tumor development. Collectively, all the data demonstrate a central role of Flk-1 in the formation of VM in GBM. This study has shed light on molecular mechanisms mediating tumor aggressiveness and also provided a therapeutic target for patient treatment. 相似文献
18.
Mark W. Zimmerman Kelley E. McQueeney Jeffrey S. Isenberg Bruce R. Pitt Karla A. Wasserloos Gregg E. Homanics John S. Lazo 《The Journal of biological chemistry》2014,289(9):5904-5913
Protein-tyrosine phosphatase 4A3 (PTP4A3) is highly expressed in multiple human cancers and is hypothesized to have a critical, albeit poorly defined, role in the formation of experimental tumors in mice. PTP4A3 is broadly expressed in many tissues so the cellular basis of its etiological contributions to carcinogenesis may involve both tumor and stromal cells. In particular, PTP4A3 is expressed in the tumor vasculature and has been proposed to be a direct target of vascular endothelial growth factor (VEGF) signaling in endothelial cells. We now provide the first in vivo experimental evidence that PTP4A3 participates in VEGF signaling and contributes to the process of pathological angiogenesis. Colon tumor tissue isolated from Ptp4a3-null mice revealed reduced tumor microvessel density compared with wild type controls. Additionally, vascular cells derived from Ptp4a3-null tissues exhibited decreased invasiveness in an ex vivo wound healing assay. When primary endothelial cells were isolated and cultured in vitro, Ptp4a3-null cells displayed greatly reduced migration compared with wild type cells. Exposure to VEGF led to an increase in Src phosphorylation in wild type endothelial cells, a response that was completely ablated in Ptp4a3-null cells. In loss-of-function studies, reduced VEGF-mediated migration was also observed when human endothelial cells were treated with a small molecule inhibitor of PTP4A3. VEGF-mediated in vivo vascular permeability was significantly attenuated in PTP4A3-deficient mice. These findings strongly support a role for PTP4A3 as an important contributor to endothelial cell function and as a multimodal target for cancer therapy and mitigating VEGF-regulated angiogenesis. 相似文献
19.
Imoh S. Okon Kathleen A. Coughlan Ming-Hui Zou 《The Journal of biological chemistry》2014,289(3):1639-1648
Aberrant receptor tyrosine kinase phosphorylation (pRTK) has been associated with diverse pathological conditions, including human neoplasms. In lung cancer, frequent liver kinase B1 (LKB1) mutations correlate with tumor progression, but potential links with pRTK remain unknown. Heightened and sustained receptor activation was demonstrated by LKB1-deficient A549 (lung) and HeLaS3 (cervical) cancer cell lines. Depletion (siRNA) of endogenous LKB1 expression in H1792 lung cancer cells also correlated with increased pRTK. However, ectopic LKB1 expression in A549 and HeLaS3 cell lines, as well as H1975 activating-EGF receptor mutant lung cancer cell resulted in dephosphorylation of several tumor-enhancing RTKs, including EGF receptor, ErbB2, hepatocyte growth factor receptor (c-Met), EphA2, rearranged during transfection (RET), and insulin-like growth factor I receptor. Receptor abrogation correlated with attenuation of phospho-Akt and increased apoptosis. Global phosphatase inhibition by orthovanadate or depletion of protein tyrosine phosphatases (PTPs) resulted in the recovery of receptor phosphorylation. Specifically, the activity of SHP-2, PTP-1β, and PTP-PEST was enhanced by LKB1-expressing cells. Our findings provide novel insight on how LKB1 loss of expression or function promotes aberrant RTK signaling and rapid growth of cancer cells. 相似文献
20.
Myocardial infarction stabilization by cell‐based expression of controlled Vascular Endothelial Growth Factor levels 下载免费PDF全文
Ludovic Melly Aurélien Frobert Stéphane Cook Marie‐Noëlle Giraud Thierry Carrel Hendrik T. Tevaearai Stahel Friedrich Eckstein Benoît Rondelet Andrea Banfi 《Journal of cellular and molecular medicine》2018,22(5):2580-2591
Vascular Endothelial Growth Factor (VEGF) can induce normal or aberrant angiogenesis depending on the amount secreted in the microenvironment around each cell. Towards a possible clinical translation, we developed a Fluorescence Activated Cell Sorting (FACS)‐based technique to rapidly purify transduced progenitors that homogeneously express a desired specific VEGF level from heterogeneous primary populations. Here, we sought to induce safe and functional angiogenesis in ischaemic myocardium by cell‐based expression of controlled VEGF levels. Human adipose stromal cells (ASC) were transduced with retroviral vectors and FACS purified to generate two populations producing similar total VEGF doses, but with different distributions: one with cells homogeneously producing a specific VEGF level (SPEC), and one with cells heterogeneously producing widespread VEGF levels (ALL), but with an average similar to that of the SPEC population. A total of 70 nude rats underwent myocardial infarction by coronary artery ligation and 2 weeks later VEGF‐expressing or control cells, or saline were injected at the infarction border. Four weeks later, ventricular ejection fraction was significantly worsened with all treatments except for SPEC cells. Further, only SPEC cells significantly increased the density of homogeneously normal and mature microvascular networks. This was accompanied by a positive remodelling effect, with significantly reduced fibrosis in the infarcted area. We conclude that controlled homogeneous VEGF delivery by FACS‐purified transduced ASC is a promising strategy to achieve safe and functional angiogenesis in myocardial ischaemia. 相似文献